179 research outputs found

    IL28B genotype predicts response to chronic hepatitis C triple therapy with telaprevir or boceprevir in treatment naïve and treatment-experienced patients other than prior partial- and null-responders

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the IL28B gene were shown to have limited utility in predicting response to telaprevir and boceprevir in treatment of chronic HCV infection in clinical trials. Data outside of the clinical trial setting are lacking. We assessed the value of single and combined IL28B SNPs rs12979860 and rs8099917 genotypes in predicting sustained virological response 12 weeks after cessation of triple therapy (SVR12) with telaprevir or boceprevir in a single-centre cohort of treatment-naïve and treatment-experienced patients with genotype 1 HCV mono-infection (n = 105). The overall SVR12 rate was 65.7%. By unadjusted bivariate logistic regression analysis, rs12979860-CC and rs8099917-TT were significantly associated with SVR12 in the subgroup of patients including all naïve patients and all treatment-experienced patients with the exception of partial- and null-responders to previous HCV therapy. The predictive value of rs12979860-CC was stronger than rs8099917-TT and only rs12979860-CC remained significantly predictive of treatment success when the two variants were assessed by adjusted logistic regression analysis in the whole study cohort. In patients presenting the rs12979860-CC variant, the additional determination of rs8099917 genotype had no value. IL28B rs12979860-CC remained significantly associated with SVR12 also in the multivariate analysis including the other baseline characteristics associated to SVR12 in the bivariate analysis (i.e., female gender, HCV genotype 1b, baseline viral load <800,000 IU/mL, advanced liver fibrosis and prior partial- or null-response to HCV therapy). Our study suggests that testing for the IL28B rs12979860 genotype may still be useful in predicting response to triple therapy with boceprevir and telaprevir in naïve patients and treatment-experienced patients other than partial and null-responders

    Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology

    Full text link
    It has been recently suggested by Dvali and Vikman that the superluminal neutrino phenomenology of the OPERA experiment may be due to an environmental feature of the Earth, naturally yielding a long-range fifth force of gravitational origin whose coupling with the neutrino is set by the scale M_*, in units of reduced Planck mass. Its characteristic length lambda should not be smaller than one Earth's radius R_e, while its upper bound is expected to be slightly smaller than the Earth-Moon distance (60 R_e). We analytically work out some orbital effects of a Yukawa-type fifth force for a test particle moving in the modified field of a central body. Our results are quite general since they are not restricted to any particular size of lambda; moreover, they are valid for an arbitrary orbital configuration of the particle, i.e. for any value of its eccentricity ee. We find that the dimensionless strength coupling parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <= lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <= lambda = 3 10^10 - 4.5 10^10. Our results are neither necessarily limited to the superluminal OPERA scenario nor to the Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast with our bounds: they generally extend to any theoretical scenario implying a fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference

    NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury

    Get PDF
    BACKGROUND: A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord. METHODS: An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type. RESULTS: In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots. CONCLUSION: NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data

    AutoClickChem: Click Chemistry in Silico

    Get PDF
    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu

    Conformational Control of the Binding of the Transactivation Domain of the MLL Protein and c-Myb to the KIX Domain of CREB

    Get PDF
    The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL) transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD) simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events

    Probing the Flexibility of Large Conformational Changes in Protein Structures through Local Perturbations

    Get PDF
    Protein conformational changes and dynamic behavior are fundamental for such processes as catalysis, regulation, and substrate recognition. Although protein dynamics have been successfully explored in computer simulation, there is an intermediate-scale of motions that has proven difficult to simulate—the motion of individual segments or domains that move independently of the body the protein. Here, we introduce a molecular-dynamics perturbation method, the Rotamerically Induced Perturbation (RIP), which can generate large, coherent motions of structural elements in picoseconds by applying large torsional perturbations to individual sidechains. Despite the large-scale motions, secondary structure elements remain intact without the need for applying backbone positional restraints. Owing to its computational efficiency, RIP can be applied to every residue in a protein, producing a global map of deformability. This map is remarkably sparse, with the dominant sites of deformation generally found on the protein surface. The global map can be used to identify loops and helices that are less tightly bound to the protein and thus are likely sites of dynamic modulation that may have important functional consequences. Additionally, they identify individual residues that have the potential to drive large-scale coherent conformational change. Applying RIP to two well-studied proteins, Dihdydrofolate Reductase and Triosephosphate Isomerase, which possess functionally-relevant mobile loops that fluctuate on the microsecond/millisecond timescale, the RIP deformation map identifies and recapitulates the flexibility of these elements. In contrast, the RIP deformation map of α-lytic protease, a kinetically stable protein, results in a map with no significant deformations. In the N-terminal domain of HSP90, the RIP deformation map clearly identifies the ligand-binding lid as a highly flexible region capable of large conformational changes. In the Estrogen Receptor ligand-binding domain, the RIP deformation map is quite sparse except for one large conformational change involving Helix-12, which is the structural element that allosterically links ligand binding to receptor activation. RIP analysis has the potential to discover sites of functional conformational changes and the linchpin residues critical in determining these conformational states

    Predicting nursing home admission in the U.S: a meta-analysis

    Get PDF
    Background: While existing reviews have identified significant predictors of nursing home admission, this meta-analysis attempted to provide more integrated empirical findings to identify predictors. The present study aimed to generate pooled empirical associations for sociodemographic, functional, cognitive, service use, and informal support indicators that predict nursing home admission among older adults in the U.S. Methods: Studies published in English were retrieved by searching the MEDLINE, PSYCINFO, CINAHL, and Digital Dissertations databases using the keywords: "nursing home placement," "nursing home entry," "nursing home admission," and "predictors/institutionalization." Any reports including these key words were retrieved. Bibliographies of retrieved articles were also searched. Selected studies included sampling frames that were nationally- or regionally-representative of the U.S. older population. Results: Of 736 relevant reports identified, 77 reports across 12 data sources were included that used longitudinal designs and community-based samples. Information on number of nursing home admissions, length of follow-up, sample characteristics, analysis type, statistical adjustment, and potential risk factors were extracted with standardized protocols. Random effects models were used to separately pool the logistic and Cox regression model results from the individual data sources. Among the strongest predictors of nursing home admission were 3 or more activities of daily living dependencies (summary odds ratio [OR] = 3.25; 95% confidence interval [CI], 2.56–4.09), cognitive impairment (OR = 2.54; CI, 1.44–4.51), and prior nursing home use (OR = 3.47; CI, 1.89–6.37). Conclusion: The pooled associations provided detailed empirical information as to which variables emerged as the strongest predictors of NH admission (e.g., 3 or more ADL dependencies, cognitive impairment, prior NH use). These results could be utilized as weights in the construction and validation of prognostic tools to estimate risk for NH entry over a multi-year period

    Pegylated Interferon and Ribavirin Dosing Strategies to Enhance Sustained Virologic Response

    Get PDF
    Hepatitis C virus (HCV) affects about 170 million people worldwide and is the most common chronic blood borne infection in the United States. Since the advent of blood screening protocols in the early 1990s, injection drug use has become the leading cause of infection. Hepatitis C can have both hepatic and nonhepatic manifestations of infection. Hepatic manifestations include hepatic fibrosis, cirrhosis, liver cancer, and liver failure. The standard treatment for chronic HCV is combination therapy with pegylated interferon-α and ribavirin. Although pegylated interferon and ribavirin has been used against HCV for close to a decade, advances in therapy have centered on doses and treatment durations. There has been increasing interest in applying on-treatment response or viral kinetics to predict antiviral response rates and shape therapeutic intervention. Protease inhibitors are a promising adjuvant to combination therapy, but their efficacy and safety are still under investigation

    A simulation model approach to analysis of the business case for eliminating health care disparities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Purchasers can play an important role in eliminating racial and ethnic disparities in health care. A need exists to develop a compelling "business case" from the employer perspective to put, and keep, the issue of racial/ethnic disparities in health care on the quality improvement agenda for health plans and providers.</p> <p>Methods</p> <p>To illustrate a method for calculating an employer business case for disparity reduction and to compare the business case in two clinical areas, we conducted analyses of the direct (medical care costs paid by employers) and indirect (absenteeism, productivity) effects of eliminating known racial/ethnic disparities in mammography screening and appropriate medication use for patients with asthma. We used Markov simulation models to estimate the consequences, for defined populations of African-American employees or health plan members, of a 10% increase in HEDIS mammography rates or a 10% increase in appropriate medication use among either adults or children/adolescents with asthma.</p> <p>Results</p> <p>The savings per employed African-American woman aged 50-65 associated with a 10% increase in HEDIS mammography rate, from direct medical expenses and indirect costs (absenteeism, productivity) combined, was 50.Thefindingsforasthmaweremorefavorablefromanemployerpointofviewatapproximately50. The findings for asthma were more favorable from an employer point of view at approximately 1,660 per person if raising medication adherence rates in African-American employees or dependents by 10%.</p> <p>Conclusions</p> <p>For the employer business case, both clinical scenarios modeled showed positive results. There is a greater potential financial gain related to eliminating a disparity in asthma medications than there is for eliminating a disparity in mammography rates.</p

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing
    corecore