31 research outputs found

    Vitamin C supplement use may protect against gallstones: an observational study on a randomly selected population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal experiments have shown a protective effect of vitamin C on the formation of gallstones. Few data in humans suggest an association between reduced vitamin C intake and increased prevalence of gallstone disease. The aim of this study was to assess the possible association of regular vitamin C supplementation with gallstone prevalence.</p> <p>Methods</p> <p>An observational, population-based study of 2129 subjects aged 18-65 years randomly selected from the general population in southern Germany was conducted. Abdominal ultrasound examination, completion of a standardized questionnaire, compilation of anthropometric data and blood tests were used. Data were collected in November and December 2002. Data analysis was conducted between December 2005 and January 2006.</p> <p>Results</p> <p>Prevalence of gallstones in the study population was 7.8% (167/2129). Subjects reporting vitamin C supplementation showed a prevalence of 4.7% (11/232), whereas in subjects not reporting regular vitamin C supplementation, the prevalence was 8.2% (156/1897). Female gender, hereditary predisposition, increasing age and body-mass index (BMI) were associated with increased prevalence of gallstones. Logistic regression with backward elimination adjusted for these factors showed reduced gallstone prevalence for vitamin C supplementation (odds ratio, OR 0.34; 95% confidence interval, CI 0.14 to 0.81; P = 0.01), increased physical activity (OR 0.62; 95% CI, 0.42 to 0.94; P = 0.02), and higher total cholesterol (OR 0.65; 95% CI, 0.52 to 0.79; P < 0.001).</p> <p>Conclusion</p> <p>Regular vitamin C supplementation and, to a lesser extent, increased physical activity and total cholesterol levels are associated with a reduced prevalence of gallstones. Regular vitamin C supplementation might exert a protective effect on the development of gallstones.</p

    Disparity Changes in 370 Ma Devonian Fossils: The Signature of Ecological Dynamics?

    Get PDF
    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped

    Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites

    Get PDF
    The faujasite-type of zeolites (NaX and NaY) and NaA-type of zeolite were synthesized from rice husk ash (RHA) via the hydrothermal conditions. The combustion of rice husk at controlled temperature of 600 °C for an hour in open air produce more than 90% of amorphous silica in the ash which was reactive towards the synthesis of zeolites. The formation of zeolite NaY from RHA is metastable and thus, the seeding and ageing effects in the synthesis of zeolite NaY were investigated to avoid the formation of zeolite A or P as the impurities in zeolite NaY. Zeolites NaX and NaA were also successfully synthesized with high purity, absence of impurities and other phases, and high reproducibility. Thus, the amorphous forms of silica in RHA can be used as a source of silica for the synthesis of faujasite-types and NaA-type of zeolites

    First Record of Soft Tissue Preservation in the Upper Devonian of Poland

    Get PDF
    Soft tissue preservation is reported from Upper Devonian deposits of the Holy Cross Mountains, central Poland, for the first time. The preserved soft tissues are muscles associated with arthropod cuticle fragments. The muscles are phosphatized with variable states of preservation. Well-preserved specimens display the typical banding of striated muscles. Other muscle fragments are highly degraded and/or recrystallized such that their microstructure is barely visible. The phosphatized muscles and associated cuticle are fragmented, occur in patches and some are scattered on the bedding plane. Due to the state of preservation and the lack of diagnostic features, the cuticle identification is problematic; however, it may have belonged to a phyllocarid crustacean. Taphonomic features of the remains indicate that they do not represent fossilized fecal matter (coprolite) but may represent a regurgitate, but the hypothesis is difficult to test. Most probably they represent the leftover remains after arthropod or fish scavenging. The present study shows that soft tissues, which even earlier were manipulated by scavenger, may be preserved if only special microenvironmental conditions within and around the animal remains are established

    Direct evidence of hybodont shark predation on Late Jurassic ammonites

    No full text
    International audienceSharks are known to have been ammonoid predators, as indicated by analysis of bite marks or coprolite contents. However, body fossil associations attesting to this predator-prey relationship have never been described so far. Here, I report a unique finding from the Late Jurassic of western France: a complete specimen of the Kimmeridgian ammonite Orthaspidoceras bearing one tooth of the hybodont shark Planohybodus. Some possible tooth puncture marks are also observed. This is the first direct evidence of such a trophic link between these two major Mesozoic groups, allowing an accurate identification of both organisms. Although Planohybodus displays a tearing-type dentition generally assumed to have been especially adapted for large unshelled prey, our discovery clearly shows that this shark was also able to attack robust ammonites such as aspidoceratids. The direct evidence presented here provides new insights into the Mesozoic marine ecosystem food webs
    corecore