59 research outputs found
Non-perturbative Vacuum Destabilization and D-brane Dynamics
We analyze the process of string vacuum destabilization due to instanton
induced superpotential couplings which depend linearly on charged fields. These
non-perturbative instabilities result in potentials for the D-brane moduli and
lead to processes of D-brane recombination, motion and partial moduli
stabilization at the non-perturbative vacuum. By using techniques of D-brane
instanton calculus, we explicitly compute this scalar potential in toroidal
orbifold compactifications with magnetized D-branes by summing over the
possible discrete instanton configurations. We illustrate explicitly the
resulting dynamics in globally consistent models. These instabilities can have
phenomenological applications to breaking hidden sector gauge groups, open
string moduli stabilization and supersymmetry breaking. Our results suggest
that breaking supersymmetry by Polonyi-like models in string theory is more
difficult than expected.Comment: 61 pages, 6 figures, 5 tables; Minor corrections, version published
in JHE
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
Yukawa-unified natural supersymmetry
Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY
GUT theories based on the gauge group SO(10), tended to have exceedingly large
electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we
simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa
coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As
Yukawa unification requires large tan\beta\sim50, while EWFT requires rather
light third generation squarks and low \mu\sim100-250 GeV, B-physics
constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We
are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT)
and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if
B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if
additional small flavor violating terms conspire to improve accord with
B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark
points. LHC searches will be able to access gluinos in the lower 1-2 TeV
portion of their predicted mass range although much of YUNS parameter space may
lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate,
then the rare H, A\to \mu+\mu- decay might allow a determination of
tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light
higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5
TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde
Phenomenological analysis of D-brane Pati-Salam vacua
In the present work we perform a phenomenological analysis of the effective
low energy models with Pati-Salam (PS) gauge symmetry derived in the context of
D-branes. A main issue in these models arises from the fact that the
right-handed fermions and the PS-symmetry breaking Higgs field transform
identically under the PS symmetry, causing unnatural matter-Higgs mixing
effects. We argue that this problem could be solved in particular D-brane
setups where these fields arise in different intersections. We further observe
that whenever a large Higgs mass term is generated in a particular class of
mass spectra, a splitting mechanism -reminiscent of the doublet triplet
splitting- may protect the neutral Higgs components from a heavy mass term. We
analyze the implications of each individual representation which in principle
is available in these models in order to specify the minimal spectrum required
to build up a consistent PS model which reconciles the low energy data. A short
discussion is devoted on the effects of stringy instanton corrections,
particularly those generating missing Yukawa couplings and contributing to the
fermion mass textures. We discuss the correlations of the intersecting D-brane
spectra with those obtained from Gepner constructions and analyze the
superpotential, the resulting mass textures and the low energy implications of
some examples of the latter along the lines proposed above.Comment: 50 pages, 3 figures (v2 - Minor corrections
Isospin violating dark matter in Stückelberg portal scenarios
Journal of High Energy Physics 2015.4 (2015): 175 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Hidden sector scenarios in which dark matter (DM) interacts with the Standard Model matter fields through the exchange of massive Z′ bosons are well motivated by certain string theory constructions. In this work, we thoroughly study the phenomenological aspects of such scenarios and find that they present a clear and testable consequence for direct DM searches. We show that such string motivated Stückelberg portals naturally lead to isospin violating interactions of DM particles with nuclei. We find that the relations between the DM coupling to neutrons and protons for both, spin-independent (fn/fp) and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the quarks under the extra U(1) gauge groups. We show that within this construction these ratios are generically different from ±1 (i.e. different couplings to protons and neutrons) leading to a potentially measurable distinction from other popular portals. Finally, we incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally allowed values of fn/fp and an/apThe authors are grateful to D. G. Cerdeño, L. Ibañez, F. Kahlhoefer and G. Shiu for useful comments. V.M.L. and M.P. would like to thank the support of the European Union under the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the support of the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064, the Spanish MICINN under Grant No. FPA2012-34694, the Spanish MINECO “Centro de excelencia Severo Ochoa Program” under Grant No. SEV-2012-0249, and the Community of Madrid under Grant No. HEPHACOS S2009/ESP-1473. P.S. would like to thank DESY, the University of Hamburg, and the Hong Kong IAS for kind hospitality during the completion of this work. He acknowledges support from the DOE grant DEFG-02-95ER40896 and the HKRGC grant HKUST4/CRF/13G, 604231, as well as the Collaborative Research Center SFB676 of the DFG at the University of Hambur
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
We consider a class of models with gauged U(1)_R symmetry in 4D N=1
supergravity that have, at the classical level, a metastable ground state, an
infinitesimally small (tunable) positive cosmological constant and a TeV
gravitino mass. We analyse if these properties are maintained under the
addition of visible sector (MSSM-like) and hidden sector state(s), where the
latter may be needed for quantum consistency. We then discuss the anomaly
cancellation conditions in supergravity as derived by Freedman, Elvang and
K\"ors and apply their results to the special case of a U(1)_R symmetry, in the
presence of the Fayet-Iliopoulos term () and Green-Schwarz mechanism(s).
We investigate the relation of these anomaly cancellation conditions to the
"naive" field theory approach in global SUSY, in which case U(1)_R cannot even
be gauged. We show the two approaches give similar conditions. Their induced
constraints at the phenomenological level, on the above models, remain strong
even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an
anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible
provided that the U(1)_R charges of additional hidden sector fermions
(constrained by the cubic anomaly alone) do not conflict with the related
values of U(1)_R charges of their scalar superpartners, constrained by
existence of a stable ground state. This issue may be bypassed by tuning
instead the coefficients of the Kahler connection anomalies (b_K, b_{CK}).Comment: 24 page
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
- …
