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Abstract: We consider a class of models with gauged U(1)R symmetry in 4D N=1 super-

gravity that have, at the classical level, a metastable ground state, an infinitesimally small

(tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these

properties are maintained under the addition of visible sector (MSSM-like) and hidden

sector state(s), where the latter may be needed for quantum consistency. We then discuss

the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and

Körs and apply their results to the special case of a U(1)R symmetry, in the presence of the

Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation

of these anomaly cancellation conditions to the “naive” field theory approach in global

SUSY, in which case U(1)R cannot even be gauged. We show the two approaches give

similar conditions. Their induced constraints at the phenomenological level, on the above

models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge

couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain pos-

sible provided that the U(1)R charges of additional hidden sector fermions (constrained by

the cubic anomaly alone) do not conflict with the related values of U(1)R charges of their

scalar superpartners, constrained by existence of a stable ground state. This issue may be

bypassed by tuning instead the coefficients of the Kahler connection anomalies (bK , bCK).
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1 Introduction

The aim to obtain de Sitter vacua in 4D N=1 supergravity with an infinitesimally small,

positive (tunable) cosmological constant is a difficult task [1–9]. One possible attempt in

this direction is to use models with a gauged R-symmetry (U(1)R) [10–14]. The models

with anomalous U(1) gauge symmetries other than U(1)R usually lead to anti-de Sitter

(AdS) minimum with broken supersymmetry (SUSY) [15] or the positivity of their squared

soft scalars masses is difficult to achieve [16, 17].

In [18, 19] a minimal toy model based on a U(1)R gauge symmetry was studied. In

its original version, the minimal field content of the model is the supergravity multiplet

(eiµ, ψ3/2) coupled to the gauge multiplet of U(1)R and the (string) dilaton superfield S. The

dilaton S (of scalar component s) enables the presence of a shift symmetry, S → S−i cGS Λ,

with cGS a real constant, as a consequence of the dual representation description in terms

of two-index antisymmetric tensor for Im [s]. This symmetry is gauged and S is the

only field that transforms non-linearly under it. Thus, the dilaton participates to the 4D

Green-Schwarz (GS) mechanism. The only superpotential allowed by this symmetry is of

the form W (s) = a exp(b s) with a a real constant and b < 0, with1 a Kahler potential

K(s, s) = −2κ−2 ln(s+ s).

With this minimal action and field content, one can show that there exists a ground

state for a scalar field vev with α ≡ b〈s + s〉 = −0.1833 [18, 19]. This ground state thus

1The case b < 0 is nonperturbative. The case b > 0 is not considered in this work.
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depends on b only, for a vanishing vacuum energy. There is an extremely mild dependence

on cGS as well, if one also demands an infinitesimally small positive (tunable) value of

the cosmological constant. At the same time, the gravitino mass m3/2 ∼ κ−1(a b) is near

the TeV scale2 (by tuning a) and the scale of supersymmetry breaking is that of gravity

mediation
√

〈F s〉 = (m3/2mP /|b|)1/2 GeV (by tuning b), with both F and D term breaking

from the dilaton.

The purpose of this paper is to study further this model with U(1)R gauge symmetry,

at both classical and quantum levels. We investigate if these nice properties of the model

can be maintained in the presence of additional states in the visible and hidden sectors

that a more realistic model demands. This model is extended in the visible sector by the

gauge and chiral multiplets of the minimal supersymmetric standard model (MSSM). The

effect of adding states in the hidden sector that may be demanded for quantum consistency

(like anomaly cancellation) is also investigated while trying to maintain a TeV gravitino

mass. Particular attention is paid to the anomaly cancellation mechanism in supergravity

with gauged U(1)R.

The plan of the paper is as follows. In section 2 we review the initial toy model and

examine the metastability of the ground state. We then consider two cases: 1) the addition

U(1)R-neutral superfield in the visible sector and 2) the case of a U(1)R-charged superfield

in the hidden sector. We check under what conditions the nice properties of the initial

ground state that we mentioned (like m3/2 ∼TeV, etc) are maintained.

In section 3 we investigate the anomaly cancellation in supergravity with gauged U(1)R.

A general study of anomaly cancellation conditions in supergravity with a gauge group G×
U(1) and a Green-Schwarz mechanism(s) and Fayet Iliopoulos terms (FI) of the anomalous

U(1) was presented in two interesting papers [22, 23] (see also [24, 25]). We study the

exact relation of these anomaly cancellation conditions to the “naive” field theory approach

conditions in global SUSY (using Tr over charges and GS mechanism), for the special case

of gauged U(1)R. Note that in global SUSY U(1)R cannot be gauged [26]. The spectrum

is that of minimal 4D N=1 supergravity extended by MSSM-like superfields with gauge

group of Standard Model (SM) times U(1)R. This is an interesting check and a stand-alone

result, independent of the rest of the paper.

In section 4 we apply these results to MSSM-like models. We assume that matter su-

perfields have U(1)R-charges equal to Q, use the GS mechanism in the presence of U(1)R FI

terms (which shift the fermions charges) and, notably, relax GUT-like unification condition.

Even after doing so, the anomaly cancellation remains a strong parametric constraint. We

then examine, in simple examples, if the gravitino mass remains tunable to TeV values. We

show that the addition to the MSSM hidden sector of a U(1)R charged superfield (of fermion

component ψz and charge Rz) does not solve this problem. This is because the U(1)R cu-

bic anomaly-induced constraint on the R-charge qz ∼ Rz − ξ of the scalar superpartner of

ψz, modifies the ground state of the model, thus loosing its properties like m3/2 ∼TeV.

However, tuning the coefficients (bK , bCK) of the Kahler connection anomalies or a more

complicated hidden sector could avoid this issue. Finally, appendix A presents details on

2We use κ = 1/mp, mp = MPlanck/(
√
8π) = 2.4× 1018 GeV.
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deriving the U(1)R charges of the fields, in the conformal compensator description, and

appendix B reviews the “naive” flat-space field theory results for anomalies.

2 Constructing models with gauged R-symmetry

In this section we discuss models with a U(1)R gauge symmetry in 4D N=1 supergrav-

ity [10–14] (for the Lagrangian see [20, 21]). The goal is to understand better SUSY

breaking, metastability of the ground state and to see if m3/2 remains tunable to TeV

values in such models. Consider a Kahler potential K and superpotential W and define

G = κ2K + ln
[

κ6|W |2
]

(2.1)

Then the scalar potential of the model is V = VF + VD with

VD =
1

2
(Re f(s))−1 abDaDb

VF = κ−4 eG
[

Gi (G−1)ki Gj − 3
]

= eκ
2K

[

(W i + κ2KiW †)(K−1)ji (Wj + κ2Kj W )− 3κ2 |W |2
]

(2.2)

while the auxiliary fields F i

F i = −κ−1 eG/2 (G−1)ij G
j = −eκ2 K/2 |W |

W †
(K−1)ij

(

W j + κ2Kj W †
)

(2.3)

in a standard notation;3 f is the gauge kinetic function, Da are the Killing potentials [20, 21]

Da ≡ −iFa + iXj
a(φ)Kj , Fa = −X

j
aWj

κ2W
, ⇒ Da =

iXj
a

κ2W

[

Wj + κ2Kj W
]

(2.4)

where Xj
a are Killing vectors, with δφj = ΛaXj

a(φ) under a gauge transformation of pa-

rameter Λa. Also, the (gauge) covariant derivative is defined by4 Dµφ
j = ∂µφ

j −Xj
aAµ.

2.1 The model: de Sitter ground state and TeV-gravitino mass from U(1)R

In [18, 19] (also [27]) a class of metastable de Sitter vacua was discussed, which have

a tunable (infinitesimally small) value of the cosmological constant and a TeV gravitino

mass, based on a gauged U(1)R. We briefly review this model in this section. The spectrum

consists of a chiral multiplet (dilaton S) and a gauge multiplet of U(1)R in addition to the

supergravity multiplet (eiµ, ψ3/2). The chiral multiplet S (dilaton) has a shift symmetry

(cGS is a real constant)

S → S − icGSΛ. (2.5)

3We use: Gi = ∂G/∂φ†
i , Gj = ∂G/∂φj , Gi

j = ∂2G/∂φ†
i∂φ

j , Gi
j = Ki

j . Kj = ∂K/∂φj , Kj = ∂K/∂φ†
j ,

Wi = ∂W/∂φi and W i = ∂W †/∂φ†
i ; the index i in φi labels all fields of the model, including the dilaton s.

4To establish our conventions, for an Abelian case we use Xj ≡ −i qjφj , therefore φj → exp(−i qj Λ)φj

for a field φj of charge qj under a gauge transformation Aµ → Aµ+∂µΛ
a, thereforeDµφ

j = (∂µφ
j+iqjAa

µ)φ
j .
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which is gauged. K is defined below while gauge invariance dictates the form of W

K = −2κ−2 ln(s+ s̄), W = κ−3a ebs, (2.6)

where a, b are dimensionless constants. In string theory b > 0 is considered nonphysical

and b < 0 corresponds to a nonperturbative superpotential. We assume b < 0. The gauge

kinetic function of U(1)R is taken to be f(S) = S; the dilaton transforms non-linearly,

then Xs
a is field-independent, Xs

a = −icGS, see eq. (2.4). The scalar potential is then, using

eqs. (2.1) to (2.4)

V = VF + VD

VD =
κ−4

s+ s̄

[

b cGS −
2 cGS

s+ s̄

]2

VF = κ−4 |a|2 eb(s+s̄)

[

b2

2
− 2b

s+ s̄
− 1

(s+ s̄)2

]

(2.7)

Also Fa = i b cGS κ
−2 ≡ −i ξ κ−2 is the Fayet-Iliopoulos term. The auxiliary F s of S is

F s = −κ
2

2
eκ

2K/2(s+ s̄)2|W |
[

b− 2

(s+ s̄)

]

= −κ
−1|a|
2

eb (s+s)/2 [b (s+ s̄)− 2] (2.8)

Minimising the scalar potential and imposing a small positive value for it at the minimum

point, Vmin = κ−4ǫ0 where κ−4ǫ0 ≈ (10−3eV )4, give

e−α

α

2 (α− 6)

α2 − 2α− 2
=

|a|2
b c2

GS

(2.9)

and respectively

e−α

α

(−2)(α− 2)2

(α− 2)2 − 6
+

2 ǫ0 e
−αα2b−3

[(α− 2)2 − 6] c2
GS

=
|a|2
b c2

GS

, α ≡ b〈s+ s〉 (2.10)

The second term in the l.h.s. of eq. (2.10) can be neglected to a good approximation, so the

existence of a minimum and a vanishing Vmin (ǫ0 = 0) can both be fixed by one constraint

on the set {a, b, cGS}:

α ≈ −0.1833,
|a|2
b c2

GS

≈ −50.6557 (2.11)

Note that α fixes only the product b 〈Re [s]〉, so any change of b can in principle5 be

compensated by that of Re [s]. A very small change of cGS can adjust a small (positive)

cosmological constant without impact on solution (2.11). The spectrum contains a gravitino

of mass

|m3/2 | = |κ2 eκ2 K/2W | = κ−1

∣

∣

∣

∣

a b

α

∣

∣

∣

∣

eα/2 ∼ 1TeV if |a b| ≈ 200κ× (1GeV) (2.12)

5This has an impact on the value of 1/g2s ≡ Re [s] = α/(2 b) where gs is the 4D coupling.
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As shown above, a TeV gravitino mass is possible if a second tuning constraint is satisfied

|a b| ∼ 8.3× 10−17, by tuning a. For example, a ∼ cGS ∼ 10−13 with b ∼ O(10−3 − 10−2).

The scale of SUSY breaking is found after rescaling s → sκ−1 and F s → F sκ−1 to

restore their mass dimension (before this, [s] = 0, [F s] = 1). This gives 〈F s〉 ∼ m3/2mP /|b|
or

√

〈F s〉 ∼ 1010/
√

|b|GeV, so we have gravity mediation, with the mentioned values of b.

The mass of the dilaton s is found

m2
s =

(s+ s)2

4
〈∂s∂sV 〉 = 1

4

κ−2 b3 c2
GS
g(α)

α3 (α2 − 2α− 2)
,

g(α) ≡ α5 − 8α4 + 8α3 + 44α2 − 72α− 24. (2.13)

Under the aforementioned constraints for parameters a, b, cGS, the mass of the dilaton is of

order O(1− 100)TeV

ms ≈ 15.42|b|3/2 cGS κ
−1. (2.14)

Finally, the gauge field Cµ of U(1)R “absorbs” the axion (Im [s]) and its mass is found

after canonical normalisation of the gauge kinetic terms6

mCµ =
2 cGS κ

−1

〈s+ s〉3/2 ≈ 25.48× |b|3/2 cGS κ
−1 (2.15)

which is above the TeV scale for considered a, b, cGS.

To conclude by tuning a, b, cGS one can ensure the existence of a ground state with

a small positive cosmological constant, a TeV-mass of the gravitino and a scale of SUSY

breaking similar to that in gravity mediation. These results for a toy model can be used

to construct a more realistic model for SUSY breaking in supergravity with gauged U(1)R;

however, parameters a, b, cGS must then satisfy extra constraints like anomaly cancellation

constraining cGS (see later), with strong impact on the viability of the models (such as the

values of the gravitino and soft terms masses).

2.1.1 The metastability of the ground state

The ground state we found is metastable, since there is another minimum Vmin = 0 for

a runaway solution at Re [s] = ∞. We thus need to estimate the probability (Γ) for the

current vacuum Vmin = κ−4ǫ0 > 0 to decay into the vacuum Vmin = 0 along the Re [s]

direction, through the potential barrier (figure 1 in [18, 19]). This is to ensure the ground

state is lived long-enough. This probability is (per unit of time and volume)

Γ = A e−
B
~ (1 +O(~)) , (2.16)

where ~ is the reduced Planck constant (we set ~ = 1), and A and B depend on the model.

The value of A plays a minor role in comparison with the exponential suppression; B is

6The “unusual” power of 3 in mCµ
accounts for the fact that the mass is expressed in terms of Planck

units and is consistent with the heterotic string result (where the power is 2) if expressed in terms of

string scale.
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fixed by the Euclidean action of the instanton (bounce) solution (S1) which in the limit of

a very small energy difference between the two minima is [28–30]

B =
27π2S4

1

2 ǫ30
, (2.17)

We redefine the field s into (for standard kinetic terms; s is dimensionless)

φs = κ−1 log(s+ s̄), (2.18)

S1 is given by [28–30]

S1 =

∫

dφs
√

2V(φs) = κ−3|a| S(b) (2.19)

where V is the potential of φs and

S(b) =
√
2

∫ ∞

ln(α
b )
dx

[

eb e
x

(

b2

2
− 2 be−x − e−2x

)

+
e−x

b ζ(α)

(

2 e−x − b
)2

]1/2

(2.20)

which can be computed numerically. ζ(α) is given by the expression in the l.h.s. of eq. (2.10)

(where one can set ǫ0 = 0 to a good approximation). If we interpret Re (s) as the (inverse

of the) 4D coupling (1/g2s) to a GUT-like value, Re (s) ≈ 25, this fixes b via b = α/〈s+s〉 ≈
−3× 10−3. For this value of b one finds S ≈ 0.0124106. By demanding that the gravitino

mass be of order TeV (by tuning a, see previous section) one finds B ≈ 10297. Therefore

Γ is extremely small (largely due to the small difference between the two minima);7 the

ground state is long lived enough to use this model as a starting point for building realistic

models, by adding physical fields, that have such ground state along this field direction.

2.2 A toy model with an additional field in the visible sector

We would like to preserve the nice features of the previous toy model and its ground state,

while coupling the model to the visible sector. We thus add to the model one physical

scalar field (φ) not charged8 under U(1)R. A general way to couple the visible to the

hidden sector while preserving the gauged U(1)R is to consider

K = −2κ−2 ln(s+ s) + φ†φ, W = A(φ) ebs +B(φ). (2.21)

W generalises the form in eq. (2.6). If B(φ) 6= 0, this implies that the scalar field φ in the

visible sector should have an R-charge, which we do not consider in this sub-section. So

B = 0 and

W = A(φ) ebs. (2.22)

With this W , the scalar potential is then V = VF + VD, see eq. (2.2), where

VD =
κ−4

s+ s̄

[

b cGS −
2 cGS

s+ s̄

]2

, σs =
1

2

[

b (s+ s)− 2
]2 − 3

VF =
eκ

2φ†φ

(s+ s̄)2
[

κ2 σs |W (φ)|2 + |∇φW (φ)|2
]

(2.23)

7Usually values of B ≥ 400 are regarded as metastable enough [31].
8Its fermionic spartner ψ has however a U(1)R charge Rψ = Rφ + ξ/2 = ξ/2, see the appendix.
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and ∇φW = (∂/∂φ+ κ2φ†)W . The auxiliary fields F s, Fφ of s and φ are

F s = −eκ2 K/2 |W | (s+ s)2

2
κ2

(

b− 2

s+ s

)

Fφ = −eκ2 K/2 |W |
W †

[

∇φW
]†

(2.24)

For phenomenological reasons, in viable models one would like to avoid SUSY breaking

by the “visible” sector, so we demand 〈Fφ〉 = 0 or

〈∇φA(φ)〉 = 0. (2.25)

With A(φ) being analytical, one sees that the only possibility to respect this is to have

〈φ〉 = 0, 〈∂φA〉 = 0. This gives

〈A(φ)〉 = κ−3a. (2.26)

Therefore

W =
[

κ−3 a+ W̃ (φ)
]

eb s, 〈W̃ (φ)〉 = 0. (2.27)

The ground state of the model is found by minimising V w.r.t. φ and s

∂V

∂φ
= 0,

∂V

∂s
= 0 (2.28)

The former is automatically respected with eq. (2.25), also given that φ is not R-charged.

The second condition gives

eκ
2〈|φ|2〉+b 〈s+s〉 〈ρs〉 |a|2 = c2

GS

(

b− 6

s+ s

)

, (2.29)

where

ρs =
1

2

[

b2(s+ s̄)2 − 2b(s+ s̄)− 2
]

. (2.30)

which is identical to (2.9) for 〈φ〉 = 0. Thus the previous ground state in eq. (2.9) defined

by 〈s+ s〉 = α/b is preserved, with 〈φ〉 = 0.

Further, using the notation wφφ ≡ ∂2W̃ (φ)/∂φ2, we find

〈∂φ∂φV 〉 =
eα

α2
b2

(

〈σs〉+ 2
)

a† κ−1 〈wφφ〉

〈∂φ∂φ̄V 〉 =
eα

α2
b2

[ (

〈σs〉+ 1
)

|a|2 κ−2 + |〈wφφ〉|2
]

(2.31)

while 〈∂φ∂sV 〉 = 0 following from 〈Fφ〉 = 0. The eigenvalues of the above mass matrix give

m2
± =

eα

α2
b2

[

κ−2 a2 (〈σs〉+ 1) + |wφφ|2 ± (〈σs〉+ 2)κ−1 |a†wφφ|
]

(2.32)

If κ−1|a| ≫ |wφφ|, m± ∼ m3/2 where m3/2 remains equal to that found previously in

eq. (2.12). Finally the mass of the fermion ψ, superpartner of φ, is mψ = wφφe
b〈s〉/(〈s+ s̄〉).

– 7 –
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In conclusion, the guideline to construct a realistic model is this: replace the visible

sector field φ by the MSSM superfields assumed to be U(1)R neutral, just like the field φ.

Then the ground state with all previous benefits (TeV gravitino mass, gravity mediated

SUSY breaking etc) is preserved.9 Then from eq. (2.27) we conclude that a minimal realistic

model has

W =
[

κ−3 a+ W̃MSSM

]

eb s (2.33)

where W̃MSSM is the usual MSSM superpotential with superfields replaced by their scalar

components. The Kahler potential will be similar to that considered here, with the contri-

bution of φ replaced by that of the MSSM fields. The squared soft scalar masses of such

model can be shown to be positive and close to the square of the gravitino mass (TeV2).

2.3 A toy model with a U(1)R-charged field in the hidden sector

The model considered in the previous section is still too simple in that the hidden sector

contains only the scalar field s and a U(1)R gauge boson and their superpartners. Ensuring

the quantum consistency of the model (anomaly cancellation condition10) and maintaining

at the same time the nice properties of the ground state (TeV-scale gravitino, etc) may

demand the presence of additional U(1)R charged fields in the hidden sector.

Let us then add an extra scalar field z (and its superpartner) in the hidden sector,

with a U(1)R charge qz, and examine when the ground state of the initial model can be

maintained, together with its benefits. The visible sector scalar field φ remains U(1)R-

neutral (while its superpartner acquires a U(1)R charge). As a further step from eq. (2.21),

we take

K = −2κ−2 ln(s+ s) + φ†φ+ z†z, W = A(φ, z) eb s. (2.34)

where we omitted a possible addition of a function B(z) in W for simplicity and for pre-

serving the basic properties of the model. From the invariance of the action under U(1)R,

we find the fields transformations under U(1)R

s→ s− i cGSΛ, A(φ, z) → A(φ, z) e−i β Λ,

z → z e−iqz Λ, W (φ, z) →W (φ, z) e−i (cGS b+β) Λ (2.35)

so that δA = −i β AΛ and with δA = ∂zAδz = −i qz z Λ ∂zA then ∂ lnA/∂ ln z = β/qz.

Thus A(φ, z) = (κ z)β/qz [aκ−3 + W̃ (φ)], where a is a constant and W = (κ z)β/qz
[

a κ−3 +

W̃ (φ)
]

eb s. The scalar potential is then V = VF + VD with

VD =
κ−4

s+ s

[

β + κ2 qz|z|2 + b cGS −
2 cGS

s+ s

]2

VF = eκ
2 K

[

κ2 σs |W |2 + |Wφ + κ2 φ†W |2 + |Wz + κ2 z†W |2
]

, (2.36)

9Such a case is discussed in section 4.
10This is discussed in section 3.
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The Fayet-Iliopoulos term is now Fa = i (β + b cGS)κ
−2 ≡ −i ξ κ−2. Again we demand

that11 〈Fφ〉 = 0 or 〈∇φW 〉 = 0 which is satisfied for a standard W̃ , polynomial in fields

(such as that of the MSSM) and 〈φ〉 = 0.

The minimum condition of the potential w.r.t. φ is automatically satisfied since φ does

not break SUSY. To simplify the analysis we consider that the scalar field z does not enter

in the superpotential, so β = 0. This choice is also motivated by the analysis in the next

section and impacts on the value of FI term ξ, giving ξ = −b cGS as we had before.12 Then

W =
[

aκ−3 + W̃ (φ)
]

eb s (2.37)

The minimum conditions, evaluated at 〈φ〉 = 0 give

eγ+α b |a|2
(

〈ρs〉+γ)(1−2/α
)

−
[

bcGS (1− 2/α)+γ qz
] [

b cGS (1− 6/α)+γ qz
]

= 0 (2.38)
[

eγ+α (b/α) |a|2
(

〈σs〉+1+γ
)

+2 qz
[

qz γ+b cGS(1− 2/α
]

]

〈z†〉 (b/α) = 0 (2.39)

where γ = κ2 |〈z〉|2 and with α = b〈s+s̄〉, 〈σs〉 = (1/2)(α−2)2−3, 〈ρs〉 = (1/2)(α2−2α−2).

The condition Vmin = κ−4ǫ0 = (10−3eV)4 gives

eα+γ |a|2(b/α)
(

〈σs〉+ γ
)

+
[

qz γ + b cGS (1− 2/α)
]2

= ǫ0 α/b. (2.40)

The system of eqs. (2.38), (2.39) should be solved for α and γ in terms of the parameters of

the model. One can see that 〈z〉 = 0 is a solution to (2.39) which if used in eqs. (2.38), (2.40)

gives two equations identical to (2.9), (2.10) and thus have the same solution α = −0.1833

as found there. With this value of α, the square bracket in eq. (2.39) is positive and nonzero

if qz < 0 and cGS > 0. In this situation, the original ground state 〈s + s〉 = α/b, (b < 0)

together with 〈φ〉 = 〈z〉 = 0 is indeed a solution of this extended model provided that

qz < 0, cGS > 0. If these conditions are violated, then 〈z〉 6= 0 and the original vev for s and

its properties are not maintained. It can be shown that this solution is a ground state (i.e.

local minimum) if a higher order Kahler term with (∂K/∂z)o = 0 is added to K, without

modifying this solution.

In conclusion, a hidden sector field with charge qz < 0 can be added to the model

of previous section without altering the vacuum of the initial theory, with the new field

directions having vanishing vev’s. As a result, m3/2 is the same as found before (indepen-

dent of qz). Anomaly cancellation to which the superpartner fermion of z will contribute

can constrain qz. We shall then check if qz < 0, cGS > 0 are consistent with anomaly

cancellation (section 4).

3 U(1)R anomalies in supergravity and their field theory view

The discussion so far was at the classical level. Quantum consistency like anomalies can-

cellation is a strong constraint, discussed next. This can change the results we found, such

as the TeV-values for m3/2, because the parameters of the models (a, b, cGS or charges) are

11F s and Fφ are those of (2.24) while F z = Fφ|φ→z.
12This is important since ξ is related to the R-charges of the fields and plays a role in anomaly cancellation.
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more constrained now. This section is also relevant on its own, independent of the rest of

the paper.

Anomaly cancellation in supergravity with an anomalous U(1) with Fayet-Iliopoulos

term(s) and Green-Schwarz mechanism where discussed in the past in a general setting

in [22, 23] that we use below. However, the relation and agreement of such results to the

“naive” field theory approach was not examined for the rather special case of a gauged

U(1)R. In fact in global SUSY U(1)R cannot even be gauged. In this section we carefully

investigate this relation. We refer the reader to these two papers for the details of the

supergravity analysis while in appendix B we review the naive field theory results (flat

space), with our conventions for the U(1)R charges defined in appendix A. For a previous

detailed study see [11].

The field content is that of minimal supergravity, with gauged U(1)R and the dilaton

S for the GS mechanism, as in previous sections, and with additional (say MSSM-like)

superfields and SM gauge group times U(1)R. Anomaly cancellation conditions for the

cubic anomaly U(1)3R ((a) below) and the mixed anomalies of U(1)R with the Kahler

connection Kµ ((b), (c)), with the SM gauge group (d) and gravity (e) were found in

eqs. (4.4) in section 4 of [22]. These are

(a) CC̃ : 0 = Tr
[

(Q+ ξ/2)Q2
]

+ ξ aKCC − cGS bC

(b) CK̃ : 0 = Tr
[

(Q+ ξ/2)Q
]

− ξ aCKK − aKCC − cGS bCK

(c) KK̃ : 0 = Tr
[

Q
]

− 1

2
ξ (nλ + 3− nψ) + 4 aCKK − 4 cGS bK

(d) (FF̃ )α : 0 = −Tr
[

Q (τaτ b)α
]

+
ξ

2

[

C2(G)− C(r)
]

α
δab +

1

3
cGS bA,α δ

ab

(e) RR̃ : 0 = Tr
[

Q
]

− ξ

2
(nλ − 21− nψ) + 8 cGS bR (3.1)

where ˜ labels the dual field strength. Cµ (Cµν) is the gauge field (strength) of U(1)R;

Fµν is a field strength corresponding to gauge fields Aµ of the SM gauge group (with

group generators13 τa); α is a group index that runs over U(1)Y , SU(2)L, SU(3). Kµ is the

Kahler connection that essentially fixes the coupling of the gravitino. These three fields are

involved in conditions (a), (b), (c), (d). Condition (e) is for the mixed, U(1)R-gravitational

anomaly. There is also the usual SM condition Tr[τa{τ b, τ c}] = 0 for SM group generators.

Regarding notation, nλ is the number of gauginos present, nψ is the number of Weyl

fermions (matter fermions and dilatino), Q’s are the U(1)R charges of matter superfields

and ξ is the Fayet Iliopoulos term of our U(1)R, (see also appendix A). Unlike other types

of anomalous U(1)’s, for the special case of U(1)R, the SM gauginos, U(1)R gaugino and

gravitino are all charged under U(1)R and contribute to the anomalies. Also Trr(τ
aτ b) =

C(r) δab is the trace over the irreducible representations r, and facdf bcd = δabC2(G). The

terms in eqs. (3.1) proportional to ξ of coefficients +3 and −21 denote the contributions

of the gravitino to those anomalies [32]. Finally, cGS is the GS coefficient and aKCC , aCKK

are coefficients of local counterterms that can be present (defined shortly).

13Refs. [22, 23] use anti-hermitian T a = −iτa, so we added a minus in front of Tr in line (d) of eqs. (3.1).
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To understand the role of Kahler connectionKµ it is instructive to write down the gauge

(Vµ) couplings, present, in addition to the spin-connection, in the covariant derivatives of

the gravitino ψ3/2, gauginos λ and matter fermions ψ (such as those in the MSSM):14

ψ3/2 : Vµ = −(i/2)Kµ

λa : V ab
µ = −Ac

µ f
abc − (i/2)Kµδ

ab

ψα : Vµ = Aa
µ (−iτa) + iQCµ + (i/2)Kµ (3.2)

The local counterterms that come with coefficients aKCC , aCKK are [22, 23]

δL1 =
1

24π2
ǫµνρσ

[

aCKK CµKν ∂ρKσ + aKCC KµCν∂ρCσ

]

(3.3)

and bC , bCK , bK , etc, of eqs. (3.1) are coefficients present in the Chern-Simons terms

δL2 =
1

48π2
Im [s] ǫµνρσ∂µΩνρσ (3.4)

=
1

48π2
Im [s]

[

bC Cµν C̃
µν + bCK Cµν K̃

µν + bK Kµν K̃
µν

+bA,α (Fµν F̃
µν)α + bR Rµν R̃µν

]

with dual field definition C̃µν = 1/2 ǫµνρσCρσ, etc. Some of the coefficients bC , bK , bCK ,

bR can be related, as for example in heterotic string theory (for bC , bR) and cannot be

adjusted at will. However, this applies only to anomalous U(1)’s which are not of R-type,

since it is difficult to derive U(1)R from strings. We relax this constraint and consider

them independent.

It is assumed that the dilaton (S) is the only (super)field that transforms non-linearly

under the gauged U(1)R and thus it implements the Green-Schwarz mechanism. The

canonical normalization of the gauge kinetic term for U(1)R gauge field (Cµ) gives bC =

12π2 and we assume that this is the case in the following, while bK and bCK can in general

be non-zero.

Supergravity conditions (3.1) are not transparent from the “naive” field theory point

of view for the anomalies of U(1)R. So let us clarify the link of these conditions to the field

theory result in appendix B. First, the U(1)R charges of the fields are shown below (see

appendix A) and depend on the FI term(s):

Rψ = Q+ ξ/2, Rλ = Rψ3/2
= −ξ/2, Rψs = ξ/2. (3.5)

where Q is the charge of the superfield or scalar superpartner of ψ; Rλ, Rψ3/2
and Rψs

are the charges of the gaugino λ, gravitino ψ3/2 and dilatino ψs, respectively. Using this

information, the first three relations in eqs. (3.1) can be combined, after multiplying them

by 4, 4ξ and ξ2 respectively and then adding them and using that Tr1 = nψ − 1. The

result is15

Tr [R3
ψ] + nλR

3
λ + 3R3

ψ3/2
+R3

ψs
= cGS

[

bC + ξ bCK + ξ2 bK

]

(3.6)

14Note that eqs. (3.2) apply for the case of flat field-space.
15“-1” in Tr1 = nψ − 1 isolates the dilatino from matter fermions ψ (the charge Q of the dilaton is 0.).
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One recognizes in the l.h.s. the usual field theory cubic U(1)3R anomaly cancellation condi-

tion in the presence of FI terms and GS mechanism, in which all fermionic contributions

are added and compensated by a GS shift in the rhs: the trace adds all matter fermions

contributions, nλ is the number of gauginos16 each of a contribution R3
λ; (+3)R3

ψ3/2
is the

gravitino contribution, three times larger than that of one gaugino [32]. The result above

has (with bC = 12π2 and bCK = bK = 0) the same form as the “naive” field theory result,

eqs. (B.5), (B.7) in appendix B. This is interesting since in global SUSY U(1)R cannot even

be gauged. Note however the difference in the r.h.s. due to ξbCK + ξ2bK . The terms in δL2

of coefficients bK , bCK are not present in naive field theory case, and give extra freedom in

canceling this anomaly.

The two remaining independent conditions of constraints (a), (b), (c) in eq. (3.1), refer

to Kahler and mixed U(1)R-Kahler connection. They can always be respected by a suitable

choice of aKCC and aCKK of the local counterterms shown and are not discussed further.

One finds (by combining these two remaining constraints with condition (e) in eq. (3.1)),

that aCKK = 3ξ + cGS(bK + 2bR), while aKCC is found from one of equations (a), (b), (c)

in eq. (3.1).

The last two conditions in eq. (3.1) can be re-written as

(FF̃ )α : Tr
[

Rψ (τaτ b)α
]

+ C2(Gα) δ
abRλ = (1/3) cGS bA,α δ

ab

RR̃ : Tr
[

Rψ

]

+ nλRλ + (−21)Rψ3/2
+Rψs = −8 cGS bR (3.7)

where C2(G)δ
ab = facdf bcd with C2(G) = N for SU(N) and 0 for U(1), α labels the

groups U(1)Y , SU(2)L, SU(3). The l.h.s. of the first equation is exactly the naive field

theory contribution from (MSSM) matter fermions, of Rψ = Q + ξ/2, and gaugino. In

the second equation, there are contributions of: nλ gauginos of the SM and U(1)R gauge

groups; gravitino contribution ((−21) times that of a gaugino [32]), dilatino and the Tr

is over all matter fermions. These equations agree with the naive field theory result,

eq. (B.5), (B.7) for corresponding anomalies. bA,α in the r.h.s. of the first equation also

enters in the counterterm due to the GS mechanism in eq. (3.4). By supersymmetry,

it shows that the gauge kinetic function coupling S to all SM sub-groups becomes kα S

with kα ≡ bA,α/(12π
2).17 As for the r.h.s. of the second condition in eq. (3.7), in field

theory one has bR = −12π2, eqs. (B.5), (B.7), while in supergravity one is free to adjust

this coefficient (unlike in heterotic string case). This ends the relation of the anomaly

cancellation conditions to the naive field theoretical results (global SUSY) obtained using

the Tr over the charged states.

4 Application to MSSM-like models

Let us now first apply these anomaly relations to the model of section 2.1. The U(1)R-

charged fermions of the model are the gravitino, gaugino of U(1)R and dilatino. Their con-

16For the U(1)R×SM gauge group, nλ = 1 + (8 + 3 + 1) = 13, since the R−gaugino contributes, via

λλVµ,R.
17The quantity bA,α/12π

2 = kα plays the role of Kac-Moody levels in the heterotic string.
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tributions to the cubic U(1)3R anomaly cancellation of eq. (3.6) give (see also the appendix)

12π2 cGS = 3 (−ξ/2)3 + (−ξ/2)3 + (ξ/2)3, ⇒ 32π2 cGS = −(−bcGS)
3. (4.1)

since in such model ξ = −b cGS. This gives b > 0, which contradicts our initial assumption

b < 0 needed for the non-perturbative superpotential. Therefore this minimal model is

inconsistent at the quantum level and this demands the presence of extra states charged

under U(1)R.

Let us then consider a more realistic model. We assume the presence of the MSSM

superfields in the visible sector as outlined at the end of section 2.2. For simplicity we as-

sume that all MSSM superfields have U(1)R charges equal to Q, which is indeed possible.18

We also allow for the presence of an R-charged superfield (z, ψz), singlet under SM group,

which contributes only to anomalies that do not involve the SM group.

For the mixed anomalies of U(1)R with each of the subgroups of the SM: U(1)Y ,

SU(2)L, SU(3), we use eq. (3.7) with appropriate generators and obtain, respectively,

the three equations below. Using the quantum numbers of the states charged under the

SM group: q : (1/6, 2, 3), uc : (−2/3, 1, 3̄), dc : (1/3, 1, 3̄), l : (−1/2, 2.1), ec : (1, 1, 1),

h̃1,2 : (±1/2, 2, 1) then

11 (Q+ ξ/2) = (1/3) cGS bA,1

7 (Q+ ξ/2)− 2 (ξ/2) = (1/3) cGS bA,2

6 (Q+ ξ/2)− 3 (ξ/2) = (1/3) cGS bA,3. (4.2)

To derive eqs. (4.2), we used: Tr[(Q + ξ/2)Y 2
ψ ] = (Q + ξ/2) × 3(1/2 + 1 + 1/6 + 4/3 +

1/3) + 1/2(1 + 1) = 11(Q + ξ/2) due, in order, to l, ec, q, uc, dc, h̃1, h̃2; for SU(2)L:

Tr[(Q+ ξ/2)T aT b] = (Q+ ξ/2)[ 3(1/2+3/2)+ 1/2 (1+ 1)] = 7(Q+ ξ/2), from l, q, h̃1, h̃2.

Finally, for SU(3): Tr[(Q+ ξ/2)T aT b] = (Q+ ξ/2) × 3 (2 × 1/2+1/2+1/2) = 6 (Q+ ξ/2)

from q, dc, uc.

The above conditions become

11 (Q+ ξ/2)

k1
=

7Q+ 5 (ξ/2)

k2
=

6Q+ 3 (ξ/2)

k3
= 4π2cGS, kα ≡ bA,α

12π2
. (4.3)

where kα play the role of Kac-Moody levels, see eq. (3.4) and appendix B.19 The cancellation

of anomalies thus demands relation (4.3) among the coefficients bA,α, α : 1, 2, 3, which can

be tuned to this purpose. This relation is similar to eq. (B.5), (B.7).

By supersymmetry, the three gauge couplings of the SM group are related to coefficients

bA,α and the gauge kinetic function becomes f(S) = kα S where α labels U(1)Y , SU(2)L,

SU(3). Note that we made no assumption about the hypercharge normalization, which is

arbitrary.20 A GUT-like normalization for it would actually demand the ratios in (4.3) to

18Our U(1)R is realized only locally and we do not consider traditional R-parity symmetry as part of it [11].
19The normalized kinetic terms are 1/4

∫
d2θ kα S Tr(W aWa)α, with kα = bA,α/(12π

2) as Kac-

Moody levels.
20Anomaly cancellation fixes the quantisation of the hypercharge, but not its normalization (such as the

3/5 factor), fixed for example by the presence of a GUT group SU(5), etc, subsequently broken to SM group.
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be bA,1/(5/3) = bA,2 = bA,3. In [11] this was attempted for unification purposes and link

with the heterotic string theory, etc. However, since it is difficult to derive a gauged U(1)R
from the heterotic string, one may find this too restrictive in some models. Another reason

not to impose this demand21 is because in such case anomaly cancellation conditions via

Green Schwarz are not satisfied [11].

Eqs. (4.3) have implications for the tree level gauge couplings of the SM group which are

now fixed by 1/g2α ≡ kαRe [s]. Let us then estimate the values of couplings if Q = 0 without

GUT-like unification conditions. Then, with ξ = −b cGS, b < 0 (see sections 2.2 and 2.3)22

eq. (4.3) gives positive gauge couplings and 11/k1 = 5/k2 = 3/k3 = 8π2/(−b). However,

the values of the couplings are not realistic. With 4π/g2α = 4π kαRe [s] = −0.09×kα/b, one
finds that 4π/g21 ≈ 0.16, 4π/g22 ≈ 0.07, 4π/g23 ≈ 0.04, so all couplings are non-perturbative

(for comparison 1/αGUT ≈ 25). Therefore,23 one must consider the case with non-zero Q’s

for the fermions, which allows a perturbative solution if Cα ≡ Tr[Qτaτ b]α ≥ π|c|/|Re [s]|,
where Gα are the SM sub-groups. mixed U(1)R-SM group anomaly cancellation conditions

bring strong constraints. This is so already before considering the U(1)R cubic and U(1)R
mixed-gravitational anomalies constraints. This ends the discussion about anomalies in

which SM subgroups are involved.24

Next, let us consider the cubic anomaly of U(1)R. We consider the MSSM spectrum

but also include an additional hidden sector state (fermion) ψz of U(1)R charge25 Rz, which

thus does not affect the discussion so far on anomalies involving the SM group. Then

TrR3
ψ = 3 (2l3 + e3 + 6q3 + 3u3 + 3d3) + 2 (h̃31 + h̃32) + (8 + 3 + 1)(−ξ/2)3

+3 (−ξ/2)3 + (ξ/2)3 + (−ξ/2)3 +R3
z

= 49 (Q+ ξ/2)3 + 15 (−ξ/2)3 +R3
z (4.4)

The first line is due to MSSM matter fermions26 and in the second step the U(1)R charges

were replaced by Q+ξ/2. The sum 8+3+1 is due to gauginos of SU(3)×SU(2)L×U(1)Y , in

this order. In the second line the first term is due to the gravitino (3 times the contribution

of a gaugino), the second term is due to dilatino, the third term to U(1)R gaugino and the

last one to the hidden sector (ψz). We thus find the following condition from eq. (3.6)

49 (Q+ ξ/2)3 + 15 (−ξ/2)3 +R3
z = cGS (bC + ξ bCK + ξ2 bK) (4.5)

For the mixed U(1)R-gravitational anomaly we have under similar assumptions for

the charges

TrRψ = 3 (2l + ec + 3uc + 3dc + 6q) + 2(h̃1 + h̃2) + (−ξ/2) (13− 21) + (ξ/2) +Rz

= 49 (Q+ ξ/2) + 9(ξ/2) +Rz (4.6)

21See [33] for non-standard Kac-Moody levels, and the models with branes at singularities [34–36].
22ξ depends on the model, in section 2.1 ξ = −b cGS, (see VD), similar in section 2.2, also 2.3 if β = 0.
23There are examples where one can lift the GUT-like relation and perturbativity and still make pre-

dictions, via infrared fixed-point(s) dynamics for ratios of these couplings, which replace the GUT-like

constraints [37–39].
24The anomaly U(1)2R−U(1)Y vanishes, TrY = 0 on MSSM matter fermions (SM-gravitational anomaly).
25Its superpartner is a scalar field z, of charge qz, see also the discussion in section 2.3.
26Their anomaly contributions are identified by their name in a standard notation.
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In the first line 13 = (8+3+1)+1 from all SM gauginos and U(1)R-gaugino while +(ξ/2)

is due to dilatino. Then

49Q+ 29 ξ +Rz = −8 cGS bR (4.7)

From (4.5), (4.7), with bC = 12π2, for canonical gauge kinetic term of U(1)R one

must satisfy

R3
z = 12π2 cGS[1 + ξ (bCK + ξ bK)/(12π2)]− 49 (Q+ ξ/2)3 + 15(ξ/2)3

bR = −(29 ξ +Rz + 49Q)/(8 cGS); (4.8)

For fixed Q, ξ, bK and bCK one should adjust Rz and bR according to eq. (4.8). Thus,

canceling the cubic anomaly is possible by adding ψz of freely adjustable Rψ, even if

bK = bCK = 0. This condition can impact on the existence or stability of the ground state

of the model. Indeed, the scalar z superpartner of ψz participates in the minimisation

conditions of the scalar potential that fixes the ground state; these may impose restrictions

on qz = Rψ − ξ/2 (such as its sign) inconsistent with the above result for Rψ.
27 These can

alter the previous predictions for m3/2 ∼TeV. One can avoid this case by tuning bK or bCK

and bR to respect (4.8), see eq. (3.4).

Case (a): no extra state (z, ψz). What happens if no extra hidden state ψz is present?

From eq. (4.8) with Q = bCK = bK = 0 we have 12π2 cGS = 34 (−b cGS/2)
3 giving28

|m3/2| = κ−1 |a b/α | eα ∼ κ−1|b|3/2cGS e
α/|α| ∼ (48π2/17)

1
2 κ−1 eα/2/|α|. (4.9)

Therefore, the gravitino mass becomes of the order of Planck scale and is not “tunable”

anymore to a TeV value. As a result, the soft terms masses would also become of the

order of the Planck scale. The reason for this result is that the GS mechanism (related to

∼ cGS) and anomaly cancellation in the presence of FI terms (related to ξ ∼ b cGS), when

put together are too restrictive given the minimal field content in the hidden sector.

Case (b): including the state (z, ψ). This is similar to the model of section 2.3

“upgraded” in the visible sector by the MSSM superfields. These do not alter the discussion

there regarding the ground state, etc, since the MSSM scalars are U(1)R neutral if we set

their Q = 0. Condition (4.8) for the cubic anomaly can be re-written as follows (with

bCK = bK = 0):

(qz − b cGS/2)
3 = 12π2cGS + 34 (b cGS/2)

3 (4.10)

using that Rz = qz+ξ/2 with qz the charge of the scalar superpartner of ψz and ξ = −b cGS.

We found in section 2.3 that if qz < 0, cGS > 0 one preserves the usual ground state and

that cGS is numerically very small cGS ∼ 10−13, b ∼ O(10−3) for a TeV gravitino mass (see

section 2). This means that we can ignore the last term in the r.h.s. of eq. (4.10). Then the

above equation has no solution qz < 0. Therefore, while one can always add hidden sector

states to cancel anomalies, the result is that the ground state is modified so the prediction

m3/2 ∼TeV is not valid anymore29 and the phenomenological motivation is lost.

27Recall the constraints qz < 0 and cGS > 0 in section 2.3, see also case (b) later on.
28We set Q = 0 since with U(1)R charged MSSM scalar fields, this value of m3/2 is not valid anymore.
29In section 2.3, the gravitino mass was |m3/2| = |κ2 eκ

2 K/2 W | = κ−1 |a b/α | eα ∼ κ−1(−b)3/2cGS e
α/|α|.
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There is in principle one option left: use either bK and/or bCK to enforce qz < 0 and

maintain the TeV-value of m3/2. This option can also be used for the minimal model in

section 2.1 to relax its cubic anomaly constraint in eq. (4.1). It is also possible that when

adding more fields in the hidden sector of different charges, the anomalies cancel without

changing the ground state, with m3/2 ∼ TeV. But then finding the ground state and its

properties become difficult tasks.

To conclude, anomaly cancellation in the presence of FI terms and U(1)R gauge sym-

metry, even in the presence of a Green-Schwarz mechanism and after relaxing the GUT-

like constraints for tree level gauge couplings, is a very restrictive constraint for model

building (MSSM-like models). In an anomaly-free model, a tunable, TeV-scale gravitino

mass may remain possible provided that the U(1)R charges of additional hidden sector

fermions (constrained by anomalies) do not conflict with the related values of the U(1)R
charges of their scalar superpartners, constrained by existence of a stable ground state.

This issue may be bypassed by tuning instead the coefficients of the Kahler connection

anomalies (bK , bCK).30

5 Conclusions

In this work we analyzed, at the classical level, some models with a shift symmetry of the

dilaton that is gauged into a U(1)R symmetry in 4D N = 1 supergravity. We then studied

the impact of quantum constraints such as anomaly cancellation on these models.

At the classical level, a gauged U(1)R symmetry dictates the structure of the super-

potential W ∼ eb s where s is the dilaton which transforms non-linearly under U(1)R.

With a minimal supergravity spectrum containing the dilaton (sgoldstino), gravitino, di-

latino, massive U(1)R gauge boson and its R-gaugino superpartner, such a toy model can

have spontaneous breaking of supersymmetry with a (small, positive) tunable cosmological

constant, TeV-gravitino mass and gravity-mediation scale.

We showed that these nice properties can be maintained in the presence of additional

states in the visible and hidden sectors, under some minimal assumptions. The visible

sector can be that of the MSSM if its chiral superfields are considered R-neutral. This

means that fermions have U(1)R charges of order ξ ∼ b cGS, where ξ is the Fayet-Iliopoulos

constant and cGS is the shift of the axion, Im [s]. Additional R-charged field(s) in the

hidden sector can be present and still maintain m3/2 ∼TeV, under some constraints for

the R-charge(s).

At the quantum level, we examined the anomaly cancellation conditions in supergravity

with a gauge group of SM×U(1)R. The spectrum is that of minimal 4D N=1 supergravity

30There is a possible correction to our analysis that may be worth investigating. The presence of a non-

trivial dilaton Kahler potential K ∼ −2 ln(s + s) lead to a non-flat field space metric Ks
s = ∂2K/∂s∂s† ∼

2/(s+s)2. The anomaly cancellation conditions eqs. (3.1), which lead to the familiar field theory condition on

the R-charges (eq. (3.7)) of cubic anomaly cancellation, does not take into account the effect of this non-flat

metric. This effect impacts on anomaly cancellation via a tensor Σs
µν s = 1/(s+s)2× (DµsDνs−DνsDµs),

which “mixes” the space-time indices with the field indices. This tensor is just the target space curvature

tensor “pulled back” to space-time and is present in the covariant derivatives of the fermions. In principle,

the formalism in [22, 23] could be applied to see if the non-flat metric impacts on the cubic and the other

anomalies cancellation.
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extended by MSSM-like superfields also charged under U(1)R. Cubic and mixed anomalies

of an anomalous U(1) with the SM gauge group, Kahler connection and gravity were studied

in the past in a general approach in gauged supergravity with Green-Schwarz mechanism

and FI terms. We showed the agreement of these anomaly cancellation conditions (other

than that involving Kahler connection) to the “naive” field theory approach in global SUSY

(using Tr over charges and GS mechanism) for the special case of gauged U(1)R, with R-

charges determined using simple arguments (appendix A). Note that in global SUSY U(1)R
cannot be gauged and the U(1)R charges depend on the FI terms.

We then applied the anomaly conditions to the MSSM as visible sector, with superfields

of U(1)R-charges equal to Q while fermions charges are shifted by the FI term, and relaxed

the GUT-like unification condition. Even after doing so, the U(1)R-SM mixed-anomalies

cancellation remains a strong parametric constraint that impacts on perturbativity of the

gauge couplings (Q = 0). Even without these constraints, the cancellation of the U(1)R
cubic anomaly on its own brings constraints on the gravitino mass (and thus soft terms

masses) which becomes of the order of Planck scale. The addition to the hidden sector

of a U(1)R-charged superfield does not immediately solve this problem. This is because

the anomaly-induced constraint on the R-charge of the scalar component can modify the

ground state of the model, thus loosing its properties like m3/2 ∼TeV. A possible tuning

of the coefficients (bK , bCK) of the Kahler connection anomalies may bypass this problem.

Alternatively a more complicated hidden sector could avoid this issue, but it makes very

difficult an analysis of the existence of the ground state, with m3/2 ∼TeV.

Acknowledgments

The work of D. Ghilencea was supported by a grant of the Romanian National Authority for

Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0607. D.G.

thanks Hyun Min Lee (Chung-Ang University, Seoul) for interesting discussions on this

topic.

A Gauged U(1)R and fields charges

The action considered is

S =

∫

d4x

{

d4θE
[

(−3/κ2)S†
0 e

2 (ξ/3)VRS0 e
−κ2 K0/3

]

+

[
∫

d2θ E S3
0 W (Φi) + h.c.

]}

κ2K ≡ κ2K0 − 2 ξ VR (A.1)

Φi are matter superfields charged or not under these groups. S0 is the conformal com-

pensator superfield, E is the superspace measure, E is the chiral superspace measure. VR
is a U(1)R vector superfield, ξ is the constant Fayet-Iliopoulos term. In the flat limit

S ⊃
∫

d4θ (K0 − 2ξ VR). If K0 ⊃ Φ† exp(2 q VR)Φ then S ⊃ q|φ|2 − ξ D + D2/2 giving

D2 ∼ (q|φ|2 − ξ)2. The action is invariant under a super-Weyl symmetry (eq. (2.9) in [40])

λ→ e−3τλ E → e2τ+2τ E E → e6 τ E Wα → e−3τ Wα,

V (a) → V (a) S0 → e−2 τ S0 W →W W α̇ → e−3τ W α̇
(A.2)
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with complex parameter τ . Note that the superpotential does not transform, while in our

case it does (so super-Weyl transformation is a particular case of an R-symmetry). We

thus need an extra U(1)R; under a U(1)R gauge transformation31

VR → VR +
i

2
(Λ− Λ†), DΛ = 0 (A.3)

K must then transform (K0 invariant)

κ2K → κ2K − i ξ (Λ− Λ†) (A.4)

The action is invariant under U(1)R if

S0 → S′
0 = e−i ξ/3Λ S0, W →W ′ = e+i ξΛW ⇒ RW = −ξ. (A.5)

andG = κ2K+ln |W κ3|2 is invariant, too.32 The choice of super-Weyl gauge S0 = s0+θ
2 F

can be maintained if we combine the previous super-Weyl and the U(1)R transformations

such as the conformal compensator remains invariant (neutral). This is possible provided

that [14]

−2τ − i (ξ/3)Λ = 0, → τ = − i ξΛ
6
. (A.6)

thus Rλ = RW = −ξ/2 according to (A.2). We thus work in this gauge which keeps

manifest SUSY and holomorphicity and the compensator is neutral under this U(1)R. A

consequence is that, according to the transformation of E, the gravitino will carry a charge

under this new U(1)R. Further, we also have

RV = 0, RW = −ξ
2
= RD̄2 D (A.7)

With V ⊃ θθθλ then Rθ = Rλ = −ξ/2. A superfield of R-charge Q transforms as Φ →
e−iQΛΦ.

The component form of the action contains, for a superfield Φ = (φ, ψφ) [20]

L ⊃ Xφ ψφ λ+ h.c. (A.8)

Xφ is the Killing vector of scalar φ and λ the R-gaugino. For a superfield with Φ → e−iQΛΦ

Xφ ∝ i φ ⇒ Rψφ
= Rφ −Rλ = Q+

ξ

2
(A.9)

which was used in the text. Consider now that K0 contains a dilaton (S) dependent term

K0 ⊃ − ln(S + S† − δ VR) (A.10)

31This transformation on VR corresponds to a gauge transformation Aµ → Aµ+∂µρ where ρ = Re Λθ=θ=0.

Under this gauge transformation, the scalar fields transform as: φ → exp(−i q ρ)φ, with Dµφ ≡ (∂µφ +

i g q Aµ)φ where q is the charge of the field φ. This is consistent with conventions in the text: Dµφ
j ≡

∂µφ
j −Xj(φ)Aµ, and δφj = ρXj(φ) and the Killing vectors Xj(φ) = −i q φj for a linearly transformed φ.

These conventions are similar to those in [18] but charges q and ξ of opposite signs.
32With W = a eb S , (b < 0), under transformation S → S − i cGS Λ gives ξ = − b cGS and D2 ∼ (q|φ|2 +

b cGS)
2.
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which is invariant under our gauged U(1)R provided

S → S + i
δ

2
Λ, δ real; s→ s+ i

δ

2
ρ, ρ ≡ (Re Λ)|θ=θ=0 (A.11)

For the dilaton S = (s, ψs)

Xs = +iδ, ⇒ Rψs = −Rλ =
ξ

2
⇒ Rφs = Rψs +Rθ = 0. (A.12)

Regarding the gravitino ψ(3/2), from any of the terms of the supergravity Lagrangian

L ⊃ −1

2
eDa ψ(3/2) σ λ

a
+ eK/2W ψ(3/2)σψ(3/2) + h.c. (A.13)

one obtains the value of Rψ3/2
used in the text:

Rψ(3/2)
= Rλ =

1

2
RW =

−ξ
2
. (A.14)

B Cancellation of anomalies with a U(1)R × SM group

Consider the Lagrangian in the global SUSY limit, with S the dilaton:

L = −
∫

d4θ ln(S + S − δ VR)

+

{

1

16π2 κ

∫

d2θ
[

kR SWα
RWR,α + ka S TrWα

a Wa,α

]

+ h.c.

}

(B.1)

where κ cancels the Tr factor in non-Abelian case. kR and ka are Kac-Moody levels of U(1)R
and subgroups Ga : U(1)Y , SU2)L, SU(3) of the SM group. For example for U(1)R part

L ⊃ 1

16 g2

∫

d2θ kR SW2
R

⊃ kR

{−1

4
Re [s]Cµν C

µν +
1

2
Re [s]D2

a +
1

4
Im [s]Cµν C̃

µν

}

(B.2)

where C̃µν = 1/2 ǫµνρσCρσ. Consider the shift

S → S + i
δ

2
Λ(x) (B.3)

and define

Cα = TrGα [T (r)2Rψ] (B.4)

Cα denotes the mixed anomaly U(1)R with Gα = U(1)Y , SU(2)L, or SU(3) and Rψ is the

U(1)R charge with fermions transforming as ψ → exp(−i Rψ ρ)ψ with ρ = Re Λ|θ=θ=0. Rψ

depend on the Fayet-Iliopoulos constant (ξ) as discussed in previous appendix.

The anomalous U(1)R generates ∆L ∝
∫

d2θ[ i Cα ΛWaWa] for each subgroup Gα.

The shift of the dilaton is the same for all Gα (ignoring kα) then the ratio Cα/kα must be
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identical for all Gα for anomalies to cancel. Also taking the U(1)3R and U(1)R-gravitational

anomaly, then one has the result

−4π2δ =
2Cα

kα
=

(2/3)TrR3
ψ

kR
=

1

12
TrRψ, (B.5)

In the paper we kept kR = 1. The gauge couplings constants are then kα 〈Re [s]〉 ≡ 1/g2α.

Regarding the mixed gravitational anomaly (last term above) this is seen from the

action

L ⊃ −1

4
Im [s]RR̃, ∆Laxion = −ρ

8
δRR̃, ∆Lanomaly =

ρ

384π2
Tr[Rψ]RR̃ (B.6)

and use ∆Laxion + ∆Lanomaly = 0. However, unlike in heterotic string, in supergravity,

RR̃ term can have a different coefficient from Im [s] since it is not part of the leading

order action.

In the text we used the notation W = a eb S , with b < 0 and S → S − i cGS Λ giving

δ/2 = −cGS. The anomaly condition (B.5) becomes

4π2 cGS =
Cα

kα
=

(1/3)TrR3
ψ

kR
=

1

24
Tr[Rψ]. (B.7)

This result was compared against the more general supergravity results in section 3.
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