22 research outputs found

    Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Get PDF
    Background: Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene.Results: Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types.Conclusions: p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen in certain developing p27Kip1-null sensory organs, and may reflect a compensatory capability inherent in the regenerative taste system

    Mature Peripheral RPE Cells Have an Intrinsic Capacity to Proliferate; A Potential Regulatory Mechanism for Age-Related Cell Loss

    Get PDF
    Mammalian peripheral retinal pigmented epithelium (RPE) cells proliferate throughout life, while central cells are senescent. It is thought that some peripheral cells migrate centrally to correct age-related central RPE loss.We ask whether this proliferative capacity is intrinsic to such cells and whether cells located centrally produce diffusible signals imposing senescence upon the former once migrated. We also ask whether there are regional differences in expression patterns of key genes involved in these features between the centre and the periphery in vivo and in vitro. Low density RPE cultures obtained from adult mice revealed significantly greater levels of proliferation when derived from peripheral compared to central tissue, but this significance declined with increasing culture density. Further, exposure to centrally conditioned media had no influence on proliferation in peripheral RPE cell cultures at the concentrations examined. Central cells expressed significantly higher levels of E-Cadherin revealing a tighter cell adhesion than in the peripheral regions. Fluorescence-labelled staining for E-Cadherin, F-actin and ZO-1 in vivo revealed different patterns with significantly increased expression on central RPE cells than those in the periphery or differences in junctional morphology. A range of other genes were investigated both in vivo and in vitro associated with RPE proliferation in order to identify gene expression differences between the centre and the periphery. Specifically, the cell cycle inhibitor p27(Kip1) was significantly elevated in central senescent regions in vivo and mTOR, associated with RPE cell senescence, was significantly elevated in the centre in comparison to the periphery.These data show that the proliferative capacity of peripheral RPE cells is intrinsic and cell-autonomous in adult mice. These differences between centre and periphery are reflected in distinct patterns in junctional markers. The regional proliferation differences may be inversely dependent to cell-cell contact

    The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice

    Get PDF
    Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition (EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover, fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1 and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such as proliferative vitroretinopathy and atrophic age-related macular degeneration

    Risk-taking, delay discounting, and time perspective in adolescent gamblers: an experimental study

    Get PDF
    Previous research has demonstrated that adult pathological gamblers (compared to controls) show risk-proneness, foreshortened time horizon, and preference for immediate rewards. No study has ever examined the interplay of these factors in adolescent gambling. A total of 104 adolescents took part in the research. Two equal-number groups of adolescent non-problem and problem gamblers, defined using the South Oaks Gambling Screen-Revised for Adolescents (SOGS-RA), were administered the Balloon Analogue Risk Task (BART), the Consideration of Future Consequences (CFC-14) Scale, and the Monetary Choice Questionnaire (MCQ). Adolescent problem gamblers were found to be more risk-prone, more oriented to the present, and to discount delay rewards more steeply than adolescent non-problem gamblers. Results of logistic regression analysis revealed that BART, MCQ, and CFC scores predicted gambling severity. These novel finding provides the first evidence of an association among problematic gambling, high risk-taking proneness, steep delay discounting, and foreshortened time horizon among adolescents. It may be that excessive gambling induces shortsighted behaviors that, in turn, facilitate gambling involvement

    Perception of Product Risks

    No full text
    This chapter provides several explanations for consumer risk perception. For frequently repeated behavior that is seemingly under their own control, consumers tend to be overly optimistic. This occurs in spite of the general tendency of consumers to be risk averse. Specific dimensions of different products or situations trigger psychometric factors, most notably dread and uncertainty that increase, or reduce risk perception. Cultural theories look for differences in risk perception caused by difference between consumer groups and how this result in interpretation of risk information. Besides these takes on risk perception, it is now commonly accepted that risk perception is at least in part based on emotions, that there is some relation between risk and benefit perception, that media attention influences perceived risks, and that perceived lack of knowledge influence risk seeking behavior. These approaches influence risk perception through potential categorical rejection of risky products, through weighing of risk against benefits and other product properties. Risk perception influences behavior as part of an elaborate evaluation or as trigger of an automatic behavior
    corecore