44 research outputs found

    Are people following hip and knee arthroplasty at greater risk of experiencing a fall and fracture? Data from the Osteoarthritis Initiative

    Get PDF
    Introduction: Falls are a major challenge for older people and are a significant source of mortality and morbidity. There has been uncertainty as to whether people with total hip (THA) or knee (TKA) arthroplasty have a greater risk of falls and associated fractures. This analysis was to explore this question with a large community dataset. Materials and Methods: Data from all people enrolled onto the US Osteoarthritis Initiative programme who had undergone a THA (n=104) or TKA (n=165), within a 12 month period, were compared to those who had not undergone an arthroplasty (n=4631). Data was collected on: the number of participants who reported a fall within a 12 month period; the frequency of falls in this period; and whether a fracture was sustained during this period. Odd ratios were calculated for the probability of experiencing a fall or fracture between the groups. Results: There was no statistical difference in falls between people following THA (OR 0.90; 95% CI: 0.58 to 1.41) or TKA (OR: 0.95; 0.67 to 1.35) compared to a non-arthroplasty cohort. Whilst there was no statistical difference in fracture risk between people following TKA compared to non-arthroplasty individuals (OR: 1.25; 95% CI: 0.57 to 2.70), those who underwent THA had a 65% lower chance of experiencing a fracture in the initial 12 post-operative months compared to the non-THA cohort (OR 0.35; 95% CI: 0.19 to 0.65; p<0.01). Conclusions: There appears a lower chance of experiencing a fracture for people following THA compared to those who have not

    Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency

    Get PDF
    Flexible transparent electrode materials such as conducting polymers, silver nanowires, carbon nanotubes and graphenes are being investigated as possible replacements for conventional brittle inorganic electrodes. However, they have critical drawbacks of low work function (WF), resulting in a high hole injection barrier to an overlying semiconducting layer in simplified organic or organic-inorganic hybrid perovskite light-emitting diodes (OLEDs or PeLEDs). Here, we report a new anode material (AnoHIL) that has multifunction of both an anode and a hole injection layer (HIL) as a single layer. The AnoHIL has easy WF tunability up to 5.8 eV and thus makes ohmic contact without any HIL. We applied our anodes to simplified OLEDs, resulting in very high efficiency (62% ph el(-1) for single and 88% ph el(-1) for tandem). The AnoHIL showed a similar tendency in simplified PeLEDs, implying universal applicability to various optoelectronics. We also demonstrated large-area flexible lightings using our anodes. Our results provide a significant step toward the next generation of high-performance simplified indium tin oxide (ITO)-free light-emitting diodes.

    A Phenotypic Mouse Model of Basaloid Breast Tumors

    Get PDF
    Chemotherapeutic strategies that target basal-like breast tumors are difficult to design without understanding their cellular and molecular basis. Here, we induce tumors in mice by carcinogen administration, creating a phenocopy of tumors with the diagnostic and functional aspects of human triple negative disease (including EGFR expression/lack of erbB, estrogen-independent growth and co-clustering of the transcriptome with other basaloid models). These tumor strains are a complement to established mouse models that are based on mutations in Brca1 and/or p53. Tumors comprise two distinct cell subpopulations, basal and luminal epithelial cells. These cell fractions were purified by flow cytometry, and only basal cell fractions found to have tumor initiating activity (cancer stem cells). The phenotype of serially regenerated tumors was stable, and irrespective of tumor precursor cell. Tumors were passaged entirely in vivo and serial generations tested for their phenotypic stability. The relative chemo-sensitivity of basal and luminal cells were evaluated. Upon treatment with anthracycline, tumors were effectively de-bulked, but recurred; this correlated with maintenance of a high rate of basal cell division throughout the treatment period. Thus, these tumors grow as robust cell mixtures of basal bipotential tumor initiating cells alongside a luminal majority, and the cellular response to drug administration is dominated by the distinct biology of the two cell types. Given the ability to separate basal and luminal cells, and the discovery potential of this approach, we propose that this mouse model could be a convenient one for preclinical studies
    corecore