373 research outputs found

    The Evolution of Plasma Composition during a Solar Flare

    Get PDF
    We analyze the coronal elemental abundances during a small flare using Hinode/EIS observations. Compared to the preflare elemental abundances, we observed a strong increase in coronal abundance of Ca xiv 193.84 Å, an emission line with low first ionization potential (FIP < 10 eV), as quantified by the ratio Ca/Ar during the flare. This is in contrast to the unchanged abundance ratio observed using Si x 258.38 Å/S x 264.23 Å. We propose two different mechanisms to explain the different composition results. First, the small flare-induced heating could have ionized S, but not the noble gas Ar, so that the flare-driven Alfvén waves brought up Si, S, and Ca in tandem via the ponderomotive force which acts on ions. Second, the location of the flare in strong magnetic fields between two sunspots may suggest fractionation occurred in the low chromosphere, where the background gas is neutral H. In this region, high-FIP S could behave more like a low-FIP than a high-FIP element. The physical interpretations proposed generate new insights into the evolution of plasma abundances in the solar atmosphere during flaring, and suggests that current models must be updated to reflect dynamic rather than just static scenarios

    Can Subphotospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?

    Get PDF
    Within the coronae of stars, abundances of those elements with low first ionization potential (FIP) often differ from their photospheric values. The coronae of the Sun and solar-type stars mostly show enhancements of low-FIP elements (the FIP effect) while more active stars such as M dwarfs have coronae generally characterized by the inverse-FIP effect (I-FIP). Here we observe patches of I-FIP effect solar plasma in AR 12673, a highly complex βγδ active region. We argue that the umbrae of coalescing sunspots, and more specifically strong light bridges within the umbrae, are preferential locations for observing I-FIP effect plasma. Furthermore, the magnetic complexity of the active region and major episodes of fast flux emergence also lead to repetitive and intense flares. The induced evaporation of the chromospheric plasma in flare ribbons crossing umbrae enables the observation of four localized patches of I-FIP effect plasma in the corona of AR 12673. These observations can be interpreted in the context of the ponderomotive force fractionation model which predicts that plasma with I-FIP effect composition is created by the refraction of waves coming from below the chromosphere. We propose that the waves generating the I-FIP effect plasma in solar active regions are generated by subphotospheric reconnection of coalescing flux systems. Although we only glimpse signatures of I-FIP effect fractionation produced by this interaction in patches on the Sun, on highly active M stars it may be the dominant process

    Evolution of Plasma Composition in an Eruptive Flux Rope

    Get PDF
    Magnetic flux ropes are bundles of twisted magnetic field enveloping a central axis. They harbor free magnetic energy and can be progenitors of coronal mass ejections (CMEs). However, identifying flux ropes on the Sun can be challenging. One of the key coronal observables that has been shown to indicate the presence of a flux rope is a peculiar bright coronal structure called a sigmoid. In this work, we show Hinode EUV Imaging Spectrometer observations of sigmoidal active region (AR) 10977. We analyze the coronal plasma composition in the AR and its evolution as a sigmoid (flux rope) forms and erupts as a CME. Plasma with photospheric composition was observed in coronal loops close to the main polarity inversion line during episodes of significant flux cancellation, suggestive of the injection of photospheric plasma into these loops driven by photospheric flux cancellation. Concurrently, the increasingly sheared core field contained plasma with coronal composition. As flux cancellation decreased and a sigmoid/flux rope formed, the plasma evolved to an intermediate composition in between photospheric and typical AR coronal compositions. Finally, the flux rope contained predominantly photospheric plasma during and after a failed eruption preceding the CME. Hence, plasma composition observations of AR 10977 strongly support models of flux rope formation by photospheric flux cancellation forcing magnetic reconnection first at the photospheric level then at the coronal level

    Organization-wide adoption of computerized provider order entry systems: a study based on diffusion of innovations theory

    Get PDF
    Background: Computerized provider order entry (CPOE) systems have been introduced to reduce medication errors, increase safety, improve work-flow efficiency, and increase medical service quality at the moment of prescription. Making the impact of CPOE systems more observable may facilitate their adoption by users. We set out to examine factors associated with the adoption of a CPOE system for inter-organizational and intra-organizational care. Methods: The diffusion of innovation theory was used to understand physicians and nurses attitudes and thoughts about implementation and use of the CPOE system. Two online survey questionnaires were distributed to all physicians and nurses using a CPOE system in county-wide healthcare organizations. The number of complete questionnaires analyzed was 134 from 200 nurses (67.0%) and 176 from 741 physicians (23.8%). Data were analyzed using descriptive-analytical statistical methods. Results: More nurses (56.7%) than physicians (31.3%) stated that the CPOE system introduction had worked well in their clinical setting (P andlt; 0.001). Similarly, more physicians (73.9%) than nurses (50.7%) reported that they found the system not adapted to their specific professional practice (P = andlt; 0.001). Also more physicians (25.0%) than nurses (13.4%) stated that they did want to return to the previous system (P = 0.041). We found that in particular the received relative advantages of the CPOE system were estimated to be significantly (P andlt; 0.001) higher among nurses (39.6%) than physicians (16.5%). However, physicians agreements with the compatibility of the CPOE and with its complexity were significantly higher than the nurses (P andlt; 0.001). Conclusions: Qualifications for CPOE adoption as defined by three attributes of diffusion of innovation theory were not satisfied in the study setting. CPOE systems are introduced as a response to the present limitations in paper-based systems. In consequence, user expectations are often high on their relative advantages as well as on a low level of complexity. Building CPOE systems therefore requires designs that can provide rather important additional advantages, e. g. by preventing prescription errors and ultimately improving patient safety and safety of clinical work. The decision-making process leading to the implementation and use of CPOE systems in healthcare therefore has to be improved. As any change in health service settings usually faces resistance, we emphasize that CPOE system designers and healthcare decision-makers should continually collect users feedback about the systems, while not forgetting that it also is necessary to inform the users about the potential benefits involved.Original Publication:Bahlol Rahimi, Toomas Timpka, Vivian Vimarlund, Srinivas Uppugunduri and Mikael Svensson, Organization-wide adoption of computerized provider order entry systems: a study based on diffusion of innovations theory, 2009, BMC MEDICAL INFORMATICS AND DECISION MAKING, (9), 52, .http://dx.doi.org/10.1186/1472-6947-9-52Licensee: BioMed Centralhttp://www.biomedcentral.com/. On the day of the defence date the original title of this article was "Adoption of computerized provider order entry systems: An organization-wide study based on diffusion of innovations theory"

    Glucanocellulosic ethanol: The undiscovered biofuel potential in energy crops and marine biomass

    Get PDF
    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions

    Information resource preferences by general pediatricians in office settings: a qualitative study

    Get PDF
    BACKGROUND: Information needs and resource preferences of office-based general pediatricians have not been well characterized. METHODS: Data collected from a sample of twenty office-based urban/suburban general pediatricians consisted of: (a) a demographic survey about participants' practice and computer use, (b) semi-structured interviews on their use of different types of information resources and (c) semi-structured interviews on perceptions of information needs and resource preferences in response to clinical vignettes representing cases in Genetics and Infectious Diseases. Content analysis of interviews provided participants' perceived use of resources and their perceived questions and preferred resources in response to vignettes. RESULTS: Participants' average time in practice was 15.4 years (2–28 years). All had in-office online access. Participants identified specialist/generalist colleagues, general/specialty pediatric texts, drug formularies, federal government/professional organization Websites and medical portals (when available) as preferred information sources. They did not identify decision-making texts, evidence-based reviews, journal abstracts, medical librarians or consumer health information for routine office use. In response to clinical vignettes in Genetics and Infectious Diseases, participants identified Question Types about patient-specific (diagnosis, history and findings) and general medical (diagnostic, therapeutic and referral guidelines) information. They identified specialists and specialty textbooks, history and physical examination, colleagues and general pediatric textbooks, and federal and professional organizational Websites as information sources. Participants with access to portals identified them as information resources in lieu of texts. For Genetics vignettes, participants identified questions about prenatal history, disease etiology and treatment guidelines. For Genetics vignettes, they identified patient history, specialists, general pediatric texts, Web search engines and colleagues as information sources. For Infectious Diseases (ID) vignettes, participants identified questions about patients' clinical status at presentation and questions about disease classification, diagnosis/therapy/referral guidelines and sources of patient education. For ID vignettes, they identified history, laboratory results, colleagues, specialists and personal experience as information sources. CONCLUSION: Content analysis of office-based general pediatricians' responses to clinical vignettes provided a qualitative description of their perceptions of information needs and preferences for information resource for cases in Genetics and Infectious Diseases. This approach may provide complementary information for discovering practitioner's information needs and resource preferences in different contexts

    Observational Evidence of S-web Source of the Slow Solar Wind

    Get PDF
    From 2022 March 18 to 21, NOAA Active Region (AR) 12967 was tracked simultaneously by Solar Orbiter at 0.35 au and Hinode/EIS at Earth. During this period, strong blueshifted plasma upflows were observed along a thin, dark corridor of open magnetic field originating at the AR’s leading polarity and continuing toward the southern extension of the northern polar coronal hole. A potential field source surface model shows large lateral expansion of the open magnetic field along the corridor. Squashing factor Q-maps of the large-scale topology further confirm super-radial expansion in support of the S-web theory for the slow wind. The thin corridor of upflows is identified as the source region of a slow solar wind stream characterized by ∼300 km s−1 velocities, low proton temperatures of ∼5 eV, extremely high density >100 cm−3, and a short interval of moderate Alfvénicity accompanied by switchback events. When the connectivity changes from the corridor to the eastern side of the AR, the in situ plasma parameters of the slow solar wind indicate a distinctly different source region. These observations provide strong evidence that the narrow open-field corridors, forming part of the S-web, produce some extreme properties in their associated solar wind streams

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201

    Making sense of health information technology implementation: A qualitative study protocol

    Get PDF
    BACKGROUND: Implementing new practices, such as health information technology (HIT), is often difficult due to the disruption of the highly coordinated, interdependent processes (e.g., information exchange, communication, relationships) of providing care in hospitals. Thus, HIT implementation may occur slowly as staff members observe and make sense of unexpected disruptions in care. As a critical organizational function, sensemaking, defined as the social process of searching for answers and meaning which drive action, leads to unified understanding, learning, and effective problem solving -- strategies that studies have linked to successful change. Project teamwork is a change strategy increasingly used by hospitals that facilitates sensemaking by providing a formal mechanism for team members to share ideas, construct the meaning of events, and take next actions. METHODS: In this longitudinal case study, we aim to examine project teams' sensemaking and action as the team prepares to implement new information technology in a tiertiary care hospital. Based on management and healthcare literature on HIT implementation and project teamwork, we chose sensemaking as an alternative to traditional models for understanding organizational change and teamwork. Our methods choices are derived from this conceptual framework. Data on project team interactions will be prospectively collected through direct observation and organizational document review. Through qualitative methods, we will identify sensemaking patterns and explore variation in sensemaking across teams. Participant demographics will be used to explore variation in sensemaking patterns. DISCUSSION: Outcomes of this research will be new knowledge about sensemaking patterns of project teams, such as: the antecedents and consequences of the ongoing, evolutionary, social process of implementing HIT; the internal and external factors that influence the project team, including team composition, team member interaction, and interaction between the project team and the larger organization; the ways in which internal and external factors influence project team processes; and the ways in which project team processes facilitate team task accomplishment. These findings will lead to new methods of implementing HIT in hospitals
    corecore