15,447 research outputs found
A summary of the BARREL campaigns: Technique for studying electron precipitation.
BARREL observed electron precipitation over wide range of energy and timescalesPrecipitating electron distribution is determined using spectroscopy for 19 January 2013 eventBARREL timing data has accuracy within sampling interval of 0.05 s
Can translation invariant systems exhibit a Many-Body Localized phase?
This note is based on a talk by one of us, F. H., at the conference PSPDE II,
Minho 2013. We review some of our recent works related to (the possibility of)
Many-Body Localization in the absence of quenched disorder (in particular
arXiv:1305.5127,arXiv:1308.6263,arXiv:1405.3279). In these works, we provide
arguments why systems without quenched disorder can exhibit `asymptotic'
localization, but not genuine localization.Comment: To appear in the Proceedings of the conference Particle systems and
PDE's - II, held at the Center of Mathematics of the University of Minho in
December 201
Spreading, Nonergodicity, and Selftrapping: a puzzle of interacting disordered lattice waves
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transitions, the quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays, to name just a few examples. Large intensity light can induce
nonlinear response, ultracold atomic gases can be tuned into an interacting
regime, which leads again to nonlinear wave equations on a mean field level.
The interplay between disorder and nonlinearity, their localizing and
delocalizing effects is currently an intriguing and challenging issue in the
field of lattice waves. In particular it leads to the prediction and
observation of two different regimes of destruction of Anderson localization -
asymptotic weak chaos, and intermediate strong chaos, separated by a crossover
condition on densities. On the other side approximate full quantum interacting
many body treatments were recently used to predict and obtain a novel many body
localization transition, and two distinct phases - a localization phase, and a
delocalization phase, both again separated by some typical density scale. We
will discuss selftrapping, nonergodicity and nonGibbsean phases which are
typical for such discrete models with particle number conservation and their
relation to the above crossover and transition physics. We will also discuss
potential connections to quantum many body theories.Comment: 13 pages in Springer International Publishing Switzerland 2016 1 M.
Tlidi and M. G. Clerc (eds.), Nonlinear Dynamics: Materials, Theory and
Experiment, Springer Proceedings in Physics 173. arXiv admin note: text
overlap with arXiv:1405.112
Metrics with Prescribed Ricci Curvature near the Boundary of a Manifold
Suppose is a manifold with boundary. Choose a point . We
investigate the prescribed Ricci curvature equation \Ric(G)=T in a
neighborhood of under natural boundary conditions. The unknown here is
a Riemannian metric. The letter in the right-hand side denotes a
(0,2)-tensor. Our main theorems address the questions of the existence and the
uniqueness of solutions. We explain, among other things, how these theorems may
be used to study rotationally symmetric metrics near the boundary of a solid
torus . The paper concludes with a brief discussion of the Einstein
equation on .Comment: 13 page
Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity
Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))
Recommended from our members
An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies
The current study provides a comparison of the photochemical environments for two NASA field studies focused on the western North Pacific (PEM-West-B (PWB) and TRACE-P (TP)). These two studies were separated in calendar time by approximately 7 years. Both studies were carried out under springtime conditions, with PWB being launched in 1994 and TP being deployed in 2001 (i.e., 23 February - 15 March 1994 and 10 March-15 April 2001, respectively). Because of the 7-year time separation, these two studies presented a unique scientific opportunity to assess whether evidence could be found to support the Department of Energy\u27s projections in 1997 that increases in anthropogenic emissions from East Asia could reach 5%/yr. Such projections would lead one to the conclusion that a significant shift in the atmospheric photochemical properties of the western North Pacific would occur. To the contrary, the findings from this study support the most recent emission inventory data [Streets et al., 2003] in that they show no significant systematic trend involving increases in any O3 precursor species and no evidence for a significant shift in the level of photochemical activity over the western North Pacific. This conclusion was reached in spite of there being real differences in the concentration levels of some species as well as differences in photochemical activity between PWB and TP. However, nearly all of these differences were shown to be a result of a near 3-week shift in TP\u27s sampling window relative to PWB, thus placing it later in the spring season. The photochemical enhancements seen during TP were most noticeable for latitudes in the range of 25-45°N. Most important among these were increases in J(O1D), OH, and HO2 and values for photochemical ozone formation and destruction, all of which were typically two times larger than those calculated for PWB. A comparison of these airborne results with ozonesonde data from four Japanese stations provided further evidence showing that the 3-week shift in the respective sampling windows of PWB and TP was a likely cause for the differences seen in O3 levels and in photochemical activity between the two airborne studies. Copyright 2003 by the American Geophysical Union
Evaporation induced flow inside circular wells
Flow field and height averaged radial velocity inside a droplet evaporating
in an open circular well were calculated for different modes of liquid
evaporation.Comment: 5 page, 3 figures, submitted to European Physical Journal
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are
represented via pairwise distances and observed at different time points. The
proposed method utilizes the information given by adjacent time points to find
the underlying cluster structure and obtain a smooth cluster evolution. This
approach allows the number of objects and clusters to differ at every time
point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in
advance -- they are instead determined automatically using a Dirichlet process
prior. We validate our model on synthetic data showing that the proposed method
is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain
cancer patients over time
By hook or by crook? Morphometry, competition and cooperation in rodent sperm
Background
Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm.
Methodology/Principal Findings
Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse.
Conclusions
Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function
Finite temperature phase transition for disordered weakly interacting bosons in one dimension
It is commonly accepted that there are no phase transitions in
one-dimensional (1D) systems at a finite temperature, because long-range
correlations are destroyed by thermal fluctuations. Here we demonstrate that
the 1D gas of short-range interacting bosons in the presence of disorder can
undergo a finite temperature phase transition between two distinct states:
fluid and insulator. None of these states has long-range spatial correlations,
but this is a true albeit non-conventional phase transition because transport
properties are singular at the transition point. In the fluid phase the mass
transport is possible, whereas in the insulator phase it is completely blocked
even at finite temperatures. We thus reveal how the interaction between
disordered bosons influences their Anderson localization. This key question,
first raised for electrons in solids, is now crucial for the studies of atomic
bosons where recent experiments have demonstrated Anderson localization in
expanding very dilute quasi-1D clouds.Comment: 8 pages, 5 figure
- …
