57 research outputs found

    To the moon: defining and detecting cryptocurrency pump-and-dumps

    Get PDF
    Pump-and-dump schemes are fraudulent price manipulations through the spread of misinformation and have been around in economic settings since at least the 1700s. With new technologies around cryptocurrency trading, the problem has intensified to a shorter time scale and broader scope. The scientific literature on cryptocurrency pump-and-dump schemes is scarce, and government regulation has not yet caught up, leaving cryptocurrencies particularly vulnerable to this type of market manipulation. This paper examines existing information on pump-and-dump schemes from classical economic literature, synthesises this with cryptocurrencies, and proposes criteria that can be used to define a cryptocurrency pump-and-dump. These pump-and-dump patterns exhibit anomalous behaviour; thus, techniques from anomaly detection research are utilised to locate points of anomalous trading activity in order to flag potential pump-and-dump activity. The findings suggest that there are some signals in the trading data that might help detect pump-and-dump schemes, and we demonstrate these in our detection system by examining several real-world cases. Moreover, we found that fraudulent activity clusters on specific cryptocurrency exchanges and coins. The approach, data, and findings of this paper might form a basis for further research into this emerging fraud problem and could ultimately inform crime prevention

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition

    Whatever happened to repeat victimisation?

    Get PDF
    Crime is concentrated at the individual level (hot dots) as well as at area level (hot spots). Research on repeat victimisation affords rich prevention opportunities but has been increasingly marginalised by policy makers and implementers despite repeat victims accounting for increasing proportions of total crime. The present paper seeks to trigger a resurgence of interest in research and initiatives based on the prevention of repeat victimisation.N/

    A comparison of methods for temporal analysis of aoristic crime

    Get PDF
    Objectives: To test the accuracy of various methods previously proposed (and one new method) to estimate offence times where the actual time of the event is not known. Methods: For 303 thefts of pedal cycles from railway stations, the actual offence time was determined from closed-circuit television and the resulting temporal distribution compared against commonly-used estimated distributions using circular statistics and analysis of residuals. Results: Aoristic analysis and allocation of a random time to each offence allow accurate estimation of peak offence times. Commonly-used deterministic methods were found to be inaccurate and to produce misleading results. Conclusions: It is important that analysts use the most accurate methods for temporal distribution approximation to ensure any resource decisions made on the basis of peak times are reliable
    corecore