67 research outputs found

    The impact of perfectionism and anxiety traits on action monitoring in major depressive disorder

    Get PDF
    Perfectionism and anxiety features are involved in the clinical presentation and neurobiology of major depressive disorder (MDD). In MDD, cognitive control mechanisms such as action monitoring can adequately be investigated applying electrophysiological registrations of the error-related negativity (ERN) and error positivity (Pe). It is also known that traits of perfectionism and anxiety influence ERN amplitudes in healthy subjects. The current study explores the impact of perfectionism and anxiety traits on action monitoring in MDD. A total of 39 MDD patients performed a flankers task during an event-related potential (ERP) session and completed the multidimensional perfectionism scale (MPS) with its concern over mistakes (CM) and doubt about actions (DA) subscales and the trait form of the State Trait Anxiety Inventory. Multiple regression analyses with stepwise backward elimination revealed MPS-DA to be a significant predictor (R2:0.22) for the ERN outcomes, and overall MPS (R2:0.13) and MPS-CM scores (R2:0.18) to have significant predictive value for the Pe amplitudes. Anxiety traits did not have a predictive capacity for the ERPs. MPS-DA clearly affected the ERN, and overall MPS and MPS-CM influenced the Pe, whereas no predictive capacity was found for anxiety traits. The manifest impact of perfectionism on patients’ error-related ERPs may contribute to our understanding of the action-monitoring process and the functional significance of the Pe in MDD. The divergent findings for perfectionism and anxiety features also indicate that the wide range of various affective personality styles might exert a different effect on action monitoring in MDD, awaiting further investigation

    Functional Polymorphism of the Mu-Opioid Receptor Gene (OPRM1) Influences Reinforcement Learning in Humans

    Get PDF
    Previous reports on the functional effects (i.e., gain or loss of function), and phenotypic outcomes (e.g., changes in addiction vulnerability and stress response) of a commonly occurring functional single nucleotide polymorphism (SNP) of the mu-opioid receptor (OPRM1 A118G) have been inconsistent. Here we examine the effect of this polymorphism on implicit reward learning. We used a probabilistic signal detection task to determine whether this polymorphism impacts response bias to monetary reward in 63 healthy adult subjects: 51 AA homozygotes and 12 G allele carriers. OPRM1 AA homozygotes exhibited typical responding to the rewarded response—that is, their bias to the rewarded stimulus increased over time. However, OPRM1 G allele carriers exhibited a decline in response to the rewarded stimulus compared to the AA homozygotes. These results extend previous reports on the heritability of performance on this task by implicating a specific polymorphism. Through comparison with other studies using this task, we suggest a possible mechanism by which the OPRM1 polymorphism may confer reduced response to natural reward through a dopamine-mediated decrease during positive reinforcement learning

    Lifespan development of stimulus-response conflict cost: similarities and differences between maturation and senescence

    Get PDF
    Age gradient of the mechanism of stimulus-response conflict cost was investigated in a population-based representative sample of 291 individuals, covering the age range from 6 to 89 years. Stimulus-response conflict cost, indicated by the amount of additional processing time required when there is a conflict between stimulus and response options, follows a U-shaped function across the lifespan. Lifespan age gradient of conflict cost parallels closely those of processing fluctuation and fluid intelligence. Individuals at both ends of the lifespan displayed a greater amount of processing fluctuation and at the same time a larger amount of conflict cost and a lower level of fluid intelligence. After controlling for chronological age and baseline processing speed, conflict cost continues to correlate significantly with fluid intelligence in adulthood and old age and with processing fluctuation in old age. The relation between processing fluctuation and conflict cost in old age lends further support for the neuromodulation of neuronal noise theory of cognitive aging as well as for theories of dopaminergic modulation of conflict monitoring

    Eight-month-old infants’ behavioural responses to peers’ emotions as related to the asymmetric frontal cortex activity

    Get PDF
    Infants are sensitive to and converge emotionally with peers’ distress. It is unclear whether these responses extend to positive affect and whether observing peer emotions motivates infants’ behaviors. This study investigates 8-month-olds’ asymmetric frontal EEG during peers’ cry and laughter, and its relation to approach and withdrawal behaviors. Participants observed videos of infant crying or laughing during two separate sessions. Frontal EEG alpha power was recorded during the first, while infants’ behaviors and emotional expressions were recorded during the second session. Facial and vocal expressions of affect suggest that infants converge emotionally with their peers’ distress, and, to a certain extent, with their happiness. At group level, the crying peer elicited right lateralized frontal activity. However, those infants with reduced right and increased left frontal activity in this situation, were more likely to approach their peer. Overall, 8-month-olds did not show asymmetric frontal activity in response to peer laughter. But, those infants who tended to look longer at their happy peer were more likely to respond with left lateralized frontal activity. The link between variations in left frontal activity and simple approach behaviors indicates the presence of a motivational dimension to infants’ responses to distressed peers

    The neurobiological link between OCD and ADHD

    Get PDF

    Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis

    Get PDF
    BACKGROUND: Depression is characterised partly by blunted reactions to reward. However, tasks probing this deficiency have not distinguished insensitivity to reward from insensitivity to the prediction errors for reward that determine learning and are putatively reported by the phasic activity of dopamine neurons. We attempted to disentangle these factors with respect to anhedonia in the context of stress, Major Depressive Disorder (MDD), Bipolar Disorder (BPD) and a dopaminergic challenge. METHODS: Six behavioural datasets involving 392 experimental sessions were subjected to a model-based, Bayesian meta-analysis. Participants across all six studies performed a probabilistic reward task that used an asymmetric reinforcement schedule to assess reward learning. Healthy controls were tested under baseline conditions, stress or after receiving the dopamine D2 agonist pramipexole. In addition, participants with current or past MDD or BPD were evaluated. Reinforcement learning models isolated the contributions of variation in reward sensitivity and learning rate. RESULTS: MDD and anhedonia reduced reward sensitivity more than they affected the learning rate, while a low dose of the dopamine D2 agonist pramipexole showed the opposite pattern. Stress led to a pattern consistent with a mixed effect on reward sensitivity and learning rate. CONCLUSION: Reward-related learning reflected at least two partially separable contributions. The first related to phasic prediction error signalling, and was preferentially modulated by a low dose of the dopamine agonist pramipexole. The second related directly to reward sensitivity, and was preferentially reduced in MDD and anhedonia. Stress altered both components. Collectively, these findings highlight the contribution of model-based reinforcement learning meta-analysis for dissecting anhedonic behavior

    Underlying Mechanisms of Gene–Environment Interactions in Externalizing Behavior: A Systematic Review and Search for Theoretical Mechanisms

    Get PDF
    corecore