45 research outputs found

    Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides

    Get PDF
    This is the published version. Copyright 2012 Nature Publishing GroupCementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein–mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure–function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbidity associated with tooth loss

    Methods for visual mining of genomic and proteomic data atlases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.</p> <p>Results</p> <p>This paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.</p> <p>Conclusions</p> <p>The mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas.</p

    Predictors of Chemosensitivity in Triple Negative Breast Cancer: An Integrated Genomic Analysis

    Get PDF
    Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease, and although no effective targeted therapies are available to date, about one-third of patients with TNBC achieve pathologic complete response (pCR) from standard-of-care anthracycline/taxane (ACT) chemotherapy. The heterogeneity of these tumors, however, has hindered the discovery of effective biomarkers to identify such patients. Methods and Findings: We performed whole exome sequencing on 29 TNBC cases from the MD Anderson Cancer Center (MDACC) selected because they had either pCR (n = 18) or extensive residual disease (n = 11) after neoadjuvant chemotherapy, with cases from The Cancer Genome Atlas (TCGA; n = 144) and METABRIC (n = 278) cohorts serving as validation cohorts. Our analysis revealed that mutations in the AR- and FOXA1-regulated networks, in which BRCA1 plays a key role, are associated with significantly higher sensitivity to ACT chemotherapy in the MDACC cohort (pCR rate of 94.1% compared to 16.6% in tumors without mutations in AR/FOXA1 pathway, adjusted p = 0.02) and significantly better survival outcome in the TCGA TNBC cohort (log-rank test, p = 0.05). Combined analysis of DNA sequencing, DNA methylation, and RNA sequencing identified tumors of a distinct BRCA-deficient (BRCA-D) TNBC subtype characterized by low levels of wild-type BRCA1/2 expression. Patients with functionally BRCA-D tumors had significantly better survival with standard-of-care chemotherapy than patients whose tumors were not BRCA-D (log-rank test, p = 0.021), and they had significantly higher mutation burden (p < 0.001) and presented clonal neoantigens that were associated with increased immune cell activity. A transcriptional signature of BRCA-D TNBC tumors was independently validated to be significantly associated with improved survival in the METABRIC dataset (log-rank test, p = 0.009). As a retrospective study, limitations include the small size and potential selection bias in the discovery cohort. Conclusions: The comprehensive molecular analysis presented in this study directly links BRCA deficiency with increased clonal mutation burden and significantly enhanced chemosensitivity in TNBC and suggests that functional RNA-based BRCA deficiency needs to be further examined in TNBC. © 2016 Jiang et al

    Roles of Electrostatics and Conformation in Protein-Crystal Interactions

    Get PDF
    In vitro studies have shown that the phosphoprotein osteopontin (OPN) inhibits the nucleation and growth of hydroxyapatite (HA) and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood. In the computational part of the present study, we used molecular dynamics simulations to predict the adsorption of 19 peptides, each 16 amino acids long and collectively covering the entire sequence of OPN, to the {100} face of HA. This analysis showed that there is an inverse relationship between predicted strength of adsorption and peptide isoelectric point (P<0.0001). Analysis of the OPN sequence by PONDR (Predictor of Naturally Disordered Regions) indicated that OPN sequences predicted to adsorb well to HA are highly disordered. In the experimental part of the study, we synthesized phosphorylated and non-phosphorylated peptides corresponding to OPN sequences 65–80 (pSHDHMDDDDDDDDDGD) and 220–235 (pSHEpSTEQSDAIDpSAEK). In agreement with the PONDR analysis, these were shown by circular dichroism spectroscopy to be largely disordered. A constant-composition/seeded growth assay was used to assess the HA-inhibiting potencies of the synthetic peptides. The phosphorylated versions of OPN65-80 (IC50 = 1.93 µg/ml) and OPN220-235 (IC50 = 1.48 µg/ml) are potent inhibitors of HA growth, as is the nonphosphorylated version of OPN65-80 (IC50 = 2.97 µg/ml); the nonphosphorylated version of OPN220-235 has no measurable inhibitory activity. These findings suggest that the adsorption of acidic proteins to Ca2+-rich crystal faces of biominerals is governed by electrostatics and is facilitated by conformational flexibility of the polypeptide chain
    corecore