76 research outputs found

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Restricted by borders: trade-offs in transboundary conservation planning for large river systems

    Get PDF
    Effective conservation of freshwater biodiversity requires accounting for connectivity and the propagation of threats along river networks. With this in mind, the selection of areas to conserve freshwater biodiversity is challenging when rivers cross multiple jurisdictional boundaries. We used systematic conservation planning to identify priority conservation areas for freshwater fish conservation in Hungary (Central Europe). We evaluated the importance of transboundary rivers to achieve conservation goals by systematically deleting some rivers from the prioritization procedure in Marxan and assessing the trade-offs between complexity of conservation recommendations (e.g., conservation areas located exclusively within Hungary vs. transboundary) and cost (area required). We found that including the segments of the largest transboundary rivers (i.e. Danube, Tisza) in the area selection procedure yielded smaller total area compared with the scenarios which considered only smaller national and transboundary rivers. However, analyses which did not consider these large river segments still showed that fish diversity in Hungary can be effectively protected within the country’s borders in a relatively small total area (less than 20 % of the country’s size). Since the protection of large river segments is an unfeasible task, we suggest that transboundary cooperation should focus on the protection of highland riverine habitats (especially Dráva and Ipoly Rivers) and their valuable fish fauna, in addition to the protection of smaller national rivers and streams. Our approach highlights the necessity of examining different options for selecting priority areas for conservation in countries where transboundary river systems form the major part of water resources.Full Tex

    Beta diversity patterns reveal positive effects of farmland abandonment on moth communities

    Get PDF
    Farmland abandonment and the accompanying natural succession are largely perceived as unwanted amongst many European conservationists due to alleged negative effects on biodiversity levels. Here, we test this assumption by analysing alpha, beta and gamma diversity patterns of macro-moth communities in habitats on an ecological succession gradient, from extensively managed meadows to scrub-encroached and wooded sites. Macro-moths were light-trapped at 84 fixed circular sampling sites arranged in a semi-nested design within the National Park of Peneda-GerĂŞs, NW-Portugal. In total, we sampled 22825 individuals belonging to 378 species. Alpha, beta and gamma diversity patterns suggest that farmland abandonment is likely to positively affect both overall macro-moth diversity and forest macro-moth diversity, and to negatively affect species diversity of non-forest macro-moth species. Our results also show that spatial habitat heterogeneity is important to maintain gamma diversity of macromoths, especially for rare non-forest species and habitat specialistsinfo:eu-repo/semantics/publishedVersio

    Threatened reef corals of the world

    Get PDF
    10.1371/journal.pone.0034459PLoS ONE73

    Models of marine fish biodiversity : assessing predictors from three habitat classification schemes

    Get PDF
    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modeling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modeling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability

    Unlearned and learned effects of intra-hypothalamic cyclic AMP injection on feeding

    No full text
    INJECTIONS of adrenergic drugs into the hypothalamus of the rat have a wide variety of effects on feeding. Depending on site of injection, dosage, the rat's hunger state, and the drugs' peripheral alpha or beta characteristics, food intake may be elicited1–7 or suppressed7–9, or reactions to particular tastes may be modified either directly10–12 or by associative learning13. Such effects have been thought to result from the action of the injected drugs on synaptic receptors that normally respond to endogenous catecholamines. Adrenergic drugs can have marked effects on brain glycogen, however, varying widely in time course and direction between drugs and doses14–17. Drug-induced glycogenolysis might appreciably increase or decrease the supply of glucose to neurones affected. The firing rates of some neurones in both the ventromedial and lateral regions of the rat hypothalamus are influenced by the local concentration of glucose18,19. Furthermore, many of these glucosensitive units are affected by amphetamine19, which increases the amount of noradrenaline at the synapse20, inhibits feeding when injected into the hypothalamus9, and facilitates feeding when injected either with propranolol into the lateral hypothalamus or by itself into the ventromedial hypothalamus6. Although it has yet to be proved that hypothalamic glucose-sensitive neurones control normal feeding, the question arises whether any of the effects of hypothalamic injection of adrenergic drugs on feeding arise from metabolic rather than synaptic action
    • …
    corecore