54 research outputs found

    Volatile Organic Compounds and Pulmonary Function in the Third National Health and Nutrition Examination Survey, 1988–1994

    Get PDF
    BACKGROUND: Volatile organic compounds (VOCs) are present in much higher concentrations indoors, where people spend most of their time, than outdoors and may have adverse health effects. VOCs have been associated with respiratory symptoms, but few studies address objective respiratory end points such as pulmonary function. Blood levels of VOCs may be more indicative of personal exposures than are air concentrations; no studies have addressed their relationship with respiratory outcomes. OBJECTIVE: We examined whether concentrations of 11 VOCs that were commonly identified in blood from a sample of the U.S. population were associated with pulmonary function. METHODS: We used data from 953 adult participants (20–59 years of age) in the Third National Health and Nutrition Examination Survey (1988–1994) who had VOC blood measures as well as pulmonary function measures. Linear regression models were used to evaluate the relationship between 11 VOCs and measures of pulmonary function. RESULTS: After adjustment for smoking, only 1,4-dichlorobenzene (1,4-DCB) was associated with reduced pulmonary function. Participants in the highest decile of 1,4-DCB concentration had decrements of −153 mL [95% confidence interval (CI), −297 to −8] in forced expiratory volume in 1 sec and −346 mL/sec (95% CI, −667 to −24) in maximum mid-expiratory flow rate, compared with participants in the lowest decile. CONCLUSIONS: Exposure to 1,4-DCB, a VOC related to the use of air fresheners, toilet bowl deodorants, and mothballs, at levels found in the U.S. general population, may result in reduced pulmonary function. This common exposure may have long-term adverse effects on respiratory health

    Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development

    Get PDF
    The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies

    Meeting the International Health Regulations (2005) surveillance core capacity requirements at the subnational level in Europe: the added value of syndromic surveillance

    Get PDF
    BACKGROUND: The revised World Health Organization's International Health Regulations (2005) request a timely and all-hazard approach towards surveillance, especially at the subnational level. We discuss three questions of syndromic surveillance application in the European context for assessing public health emergencies of international concern: (i) can syndromic surveillance support countries, especially the subnational level, to meet the International Health Regulations (2005) core surveillance capacity requirements, (ii) are European syndromic surveillance systems comparable to enable cross-border surveillance, and (iii) at which administrative level should syndromic surveillance best be applied? DISCUSSION: Despite the ongoing criticism on the usefulness of syndromic surveillance which is related to its clinically nonspecific output, we demonstrate that it was a suitable supplement for timely assessment of the impact of three different public health emergencies affecting Europe. Subnational syndromic surveillance analysis in some cases proved to be of advantage for detecting an event earlier compared to national level analysis. However, in many cases, syndromic surveillance did not detect local events with only a small number of cases. The European Commission envisions comparability of surveillance output to enable cross-border surveillance. Evaluated against European infectious disease case definitions, syndromic surveillance can contribute to identify cases that might fulfil the clinical case definition but the approach is too unspecific to comply to complete clinical definitions. Syndromic surveillance results still seem feasible for comparable cross-border surveillance as similarly defined syndromes are analysed. We suggest a new model of implementing syndromic surveillance at the subnational level. In this model, syndromic surveillance systems are fine-tuned to their local context and integrated into the existing subnational surveillance and reporting structure. By enhancing population coverage, events covering several jurisdictions can be identified at higher levels. However, the setup of decentralised and locally adjusted syndromic surveillance systems is more complex compared to the setup of one national or local system. SUMMARY: We conclude that syndromic surveillance if implemented with large population coverage at the subnational level can help detect and assess the local and regional effect of different types of public health emergencies in a timely manner as required by the International Health Regulations (2005)

    Wave-swept coralliths of Saba Bank, Dutch Caribbean

    Get PDF

    A non-technical overview of spatially explicit capture-recapture models

    Get PDF
    Most capture-recapture studies are inherently spatial in nature, with capture probabilities depending on the location of traps relative to animals. The spatial component of the studies has until recently, however, not been incorporated in statistical capture-recapture models. This paper reviews capture-recapture models that do include an explicit spatial component. This is done in a non-technical way, omitting much of the algebraic detail and focussing on the model formulation rather than on the estimation methods (which include inverse prediction, maximum likelihood and Bayesian methods). One can view spatially explicit capture-recapture (SECR) models as an endpoint of a series of spatial sampling models, starting with circular plot survey models and moving through conventional distance sampling models, with and without measurement errors, through mark-recapture distance sampling (MRDS) models. This paper attempts a synthesis of these models in what I hope is a style accessible to non-specialists, placing SECR models in the context of other spatial sampling models.PostprintPeer reviewe

    Omnivory in birds is a macroevolutionary sink

    Get PDF
    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources
    corecore