121 research outputs found
Developmental and evolutionary assumptions in a study about the impact of premature birth and low income on mother–infant interaction
In order to study the impact of premature
birth and low income on mother–infant interaction, four Portuguese samples were gathered: full-term, middle-class (n=99); premature, middle-class (n=63); full-term, low income (n=22); and premature, low income (n=21). Infants were filmed in a free play situation with their mothers, and the results were scored using the CARE Index. By means of multinomial regression analysis, social economic status (SES) was found to be the best predictor of maternal sensitivity and infant cooperative behavior within a set of medical and social factors. Contrary to the expectations of the cumulative risk perspective, two factors of risk (premature birth together with low SES) were as negative
for mother–infant interaction as low SES solely. In this study, as previous studies have shown, maternal sensitivity and infant cooperative behavior were highly correlated, as was maternal control with infant compliance. Our results further indicate that, when maternal lack of responsiveness
is high, the infant displays passive behavior, whereas when the maternal lack of responsiveness is medium, the infant
displays difficult behavior. Indeed, our findings suggest that, in these cases, the link between types of maternal and infant interactive behavior is more dependent on the degree of maternal lack of responsiveness than it is on birth status
or SES. The results will be discussed under a developmental and evolutionary reasonin
Beyond the Woodward-Hoffman rules: what controls reactivity in eliminative aromatic ring-forming reactions?
The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions
10 reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties
Uniform electron gases
We show that the traditional concept of the uniform electron gas (UEG) --- a
homogeneous system of finite density, consisting of an infinite number of
electrons in an infinite volume --- is inadequate to model the UEGs that arise
in finite systems. We argue that, in general, a UEG is characterized by at
least two parameters, \textit{viz.} the usual one-electron density parameter
and a new two-electron parameter . We outline a systematic
strategy to determine a new density functional across the
spectrum of possible and values.Comment: 8 pages, 2 figures, 5 table
Optical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations
The emergence of a new strain of coronavirus in late 2019, SARS-CoV-2, led to a global pandemic in 2020. This may have been preventable if large scale, rapid diagnosis of active cases had been possible, and this has highlighted the need for more effective and efficient ways of detecting and managing viral infections. In this work, we investigate three different optical techniques for quantifying the binding of recombinant SARS-CoV-2 spike protein to surface-immobilized oligonucleotide aptamers. Biolayer interferometry is a relatively cheap, robust, and rapid method that only requires very small sample volumes. However, its detection limit of 250 nM means that it is not sensitive enough to detect antigen proteins at physiologically relevant levels (sub-pM). Surface plasmon resonance is a more sensitive technique but requires larger sample volumes, takes longer, requires more expensive instrumentation, and only reduces the detection limit to 5 nM. Surface-enhanced Raman spectroscopy is far more sensitive, enabling detection of spike protein to sub-picomolar concentrations. Control experiments performed using scrambled aptamers and using bovine serum albumin as an analyte show that this apta-sensing approach is both sensitive and selective, with no appreciable response observed for any controls. Overall, these proof-of-principle results demonstrate that SERS-based aptasensors hold great promise for development into rapid, point-of-use antigen detection systems, enabling mass testing without any need for reagents or laboratory expertise and equipment.fals
Predicting the outcome of photocyclisation reactions: a joint experimental and computational investigation
Photochemical oxidative cyclodehydrogenation reactions are a versatile class of aromatic ring-forming reactions. They are tolerant to functional group substitution and heteroatom inclusion, so can be used to form a diverse range of extended polyaromatic systems by fusing existing ring substituents. However, despite their undoubted synthetic utility, there are no existing models—computational or heuristic—that predict the outcome of photocyclisation reactions across all possible classes of reactants. This can be traced back to the fact that “negative” results are rarely published in the synthetic literature and the lack of a general conceptual framework for understanding how photoexcitation affects reactivity. In this work, we address both of these issues. We present experimental data for a series of aromatically substituted pyrroles and indoles, and show that quantifying induced atomic forces upon photoexcitation provides a powerful predictive model for determining whether a given reactant will photoplanarise and hence proceed to photocyclised product under appropriate reaction conditions. The propensity of a molecule to photoplanarise is related to localised changes in charge distribution around the putative forming ring upon photoexcitation. This is promoted by asymmetry in molecular structures and/or charge distributions, inclusion of heteroatoms and ethylene bridging and well-separated or isolated photocyclisation sites
Imprint of DES super-structures on the Cosmic Microwave Background
Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts . We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with and a hot imprint of superclusters ; this is higher than the expected imprint of such super-structures in CDM. If we instead use an a posteriori selected filter size (), we can find a temperature decrement as large as for voids, which is above CDM expectations and is comparable to previous measurements made using SDSS super-structure data
Neurobiology of rodent self-grooming and its value for translational neuroscience
Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379
How Grandparents Matter: Support for the Cooperative Breeding Hypothesis in a Contemporary Dutch Population
Low birth rates in developed societies reflect women’s difficulties in combining work and motherhood. While demographic research has focused on the role of formal childcare in easing this dilemma, evolutionary theory points to the importance of kin. The cooperative breeding hypothesis states that the wider kin group has facilitated women’s reproduction during our evolutionary history. This mechanism has been demonstrated in pre-industrial societies, but there is no direct evidence of beneficial effects of kin’s support on parents’ reproduction in modern societies. Using three-generation longitudinal data anchored in a sample of grandparents aged 55 and over in 1992 in the Netherlands, we show that childcare support from grandparents increases the probability that parents have additional children in the next 8 to 10 years. Grandparental childcare provided to a nephew or niece of childless children did not significantly increase the probability that those children started a family. These results suggest that childcare support by grandparents can enhance their children’s reproductive success in modern societies and is an important factor in people’s fertility decisions, along with the availability of formal childcare
C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology
- …
