43 research outputs found

    Hydrogen sulfide causes excision of a genomic island in Pseudomonas syringae pv. phaseolicola

    Get PDF
    © 2017, The Author(s). Hydrogen sulfide (H2S) is known to be an important signalling molecule in both animals and plants, despite its toxic nature. In plants it has been seen to control stomatal apertures, so altering the ability of bacteria to invade plant tissues. Bacteria are known to generate H2S as well as being exposed to plant-generated H2S. During their interaction with plants pathogenic bacteria are known to undergo alterations to their genomic complement. For example Pseudomonas syringae pv. phaseolicola (Pph) strain 1302A undergoes loss of a section of DNA known as a genomic island (PPHGI-1) when exposed to the plants resistance response. Loss of PPHGI-1 from Pph 1302A enables the pathogen to overcome the plants resistance response and cause disease. Here, with the use of H2S donor molecules, changes induced in Pph 1302A genome, as demonstrated by excision of PPHGI-1, were investigated. Pph 1302A cells were found to be resistant to low concentrations of H2S. However, at sub-lethal H2S concentrations an increase in the expression of the PPHGI-1 encoded integrase gene (xerC), which is responsible for island excision, and a subsequent increase in the presence of the circular form of PPHGI-1 were detected. This suggests that H2S is able to initiate excision of PPHGI-1 from the Pph genome. Therefore, H2S that may emanate from the plant has an effect on the genome structure of invading bacteria and their ability to cause disease in plants. Modulation of such plant signals may be a way to increase plant defence responses for crops in the future

    Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, capable of surviving in a broad range of natural environments and quickly acquiring resistance. It is associated with hospital-acquired infections, particularly in patients with compromised immunity, and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa is also of nosocomial importance on dairy farms and veterinary hospitals, where it is a key morbidity factor in bovine mastitis. P. aeruginosa uses a cell-cell communication system consisting of signalling molecules to coordinate bacterial secondary metabolites, biofilm formation, and virulence. Simple and sensitive methods for the detection of biomolecules as indicators of P. aeruginosa infection would be of great clinical importance. Here, we report the synthesis of the P. aeruginosa natural product, barakacin, which was recently isolated from the bovine ruminal strain ZIO. A simple and sensitive electrochemical method was used for barakacin detection using a boron-doped diamond (BDD) and glassy carbon (GC) electrodes, based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The influence of electrolyte pH on the peak potential and peak currents was also investigated. At pH 2.0, the peak current was linearly dependent on barakacin concentration (in the range used, 1-10 µM), with correlation coefficients greater than 0.98 on both electrodes. The detection limit (S/N?=?3) on the BDD electrode was 100-fold lower than that obtained on the GC electrode. The optimized method using the BDD electrode was extended to bovine (cow feces) and human (sputum of a CF patient) samples. Spiked barakacin was easily detected in these matrices at a limit of 0.5 and 0.05 µM, respectively. Graphical abstract Electrochemical detection of barakacin

    Pancreatic islet autotransplantation with total pancreatectomy for chronic pancreatitis

    Get PDF
    Achieving pain relief and improving the quality of life are the main targets of treatment for patients with chronic pancreatitis. The use of total pancreatectomy to treat chronic pancreatitis is a radical and in some ways ideal strategy. However, total pancreatectomy is associated with severe diabetic control problems. Total pancreatectomy with islet autotransplantation can relieve severe pain and prevent the development of postsurgical diabetes. With islet autotransplantation, patients with chronic pancreatitis receive their own islet cells and therefore do not require immunosuppressive therapy. In the future, total pancreatectomy with islet autotransplantation may be considered a treatment option for chronic pancreatitis patients

    Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    Get PDF
    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen
    corecore