26 research outputs found

    Solar Spectroscopy and (Pseudo-)Diagnostics of the Solar Chromosphere

    Full text link
    I first review trends in current solar spectrometry and then concentrate on comparing various spectroscopic diagnostics of the solar chromosphere. Some are actually not at all chromospheric but just photospheric or clapotispheric and do not convey information on chromospheric heating, even though this is often assumed. Balmer Halpha is the principal displayer of the closed-field chromosphere, but it is unclear how chromospheric fibrils gain their large Halpha opacity. The open-field chromosphere seems to harbor most if not all coronal heating and solar wind driving, but is hardly seen in optical diagnostics.Comment: To appear in "Recent Advances in Spectroscopy: Astrophysical, Theoretical and Experimental Perspectives", eds. R.K. Chaudhuri, M.V. Mekkaden, A.V. Raveendran and A. Satya Narayanan, Astrophysics and Space Science Proceedings, Springer, Heidelberg, 2009. Revision: references corrected, new references added, minor text correction

    Hawking Radiation from Higher-Dimensional Black Holes

    Get PDF
    We review the quantum field theory description of Hawking radiation from evaporating black holes and summarize what is known about Hawking radiation from black holes in more than four space-time dimensions. In the context of the Large Extra Dimensions scenario, we present the theoretical formalism for all types of emitted fields and a selection of results on the radiation spectra. A detailed analysis of the Hawking fluxes in this case is essential for modelling the evaporation of higher-dimensional black holes at the LHC, whose creation is predicted by low-energy models of quantum gravity. We discuss the status of the quest for black-hole solutions in the context of the Randall-Sundrum brane-world model and, in the absence of an exact metric, we review what is known about Hawking radiation from such black holes

    Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    Get PDF
    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal–organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of ‘reticular synthesis’, in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the ‘node and strut’ principles of reticular synthesis to molecular crystals

    Computer-based tools for decision support in agroforestry: Current state and future needs

    Get PDF
    Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts ranging from the site or practice level up to the landscape and beyond. Computer-based Decision Support Tools (DST) help to integrate information to facilitate the decision-making process that directs development, acceptance, adoption, and management aspects in agroforestry. Computer-based DSTs include databases, geographical information systems, models, knowledge-base or expert systems, and ‘hybrid’ decision support systems. These different DSTs and their applications in agroforestry research and development are described in this paper. Although agroforestry lacks the large research foundation of its agriculture and forestry counterparts, the development and use of computer-based tools in agroforestry have been substantial and are projected to increase as the recognition of the productive and protective (service) roles of these tree-based practices expands. The utility of these and future tools for decision-support in agroforestry must take into account the limits of our current scientific information, the diversity of aspects (i.e. economic, social, and biophysical) that must be incorporated into the planning and design process, and, most importantly, who the end-user of the tools will be. Incorporating these tools into the design and planning process will enhance the capability of agroforestry to simultaneously achieve environmental protection and agricultural production goals
    corecore