1,797 research outputs found

    Potassium nutrition of heat-stressed lactating dairy cows

    Get PDF
    No Abstract

    Quantification of Tissue Microstructure Using Tensor-Valued Diffusion Encoding: Brain and Body

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique to probe tissue microstructure. Conventional Stejskal–Tanner diffusion encoding (i.e., encoding along a single axis), is unable to disentangle different microstructural features within a voxel; If a voxel contains microcompartments that vary in more than one attribute (e.g., size, shape, orientation), it can be difficult to quantify one of those attributes in isolation using Stejskal–Tanner diffusion encoding. Multidimensional diffusion encoding, in which the water diffusion is encoded along multiple directions in q-space (characterized by the so-called “b-tensor”) has been proposed previously to solve this problem. The shape of the b-tensor can be used as an additional encoding dimension and provides sensitivity to microscopic anisotropy. This has been applied in multiple organs, including brain, heart, breast, kidney and prostate. In this work, we discuss the advantages of using b-tensor encoding in different organs

    The impact of signal-to-noise ratio, diffusion-weighted directions and image resolution in cardiac diffusion tensor imaging - insights from the ex-vivo rat heart

    Get PDF
    Background: Cardiac diffusion tensor imaging (DTI) is limited by scan time and signal-to-noise (SNR) restrictions. This invariably leads to a trade-off between the number of averages, diffusion-weighted directions (ND), and image resolution. Systematic evaluation of these parameters is therefore important for adoption of cardiac DTI in clinical routine where time is a key constraint. Methods: High quality reference DTI data were acquired in five ex-vivo rat hearts. We then retrospectively set 2 ≤ SNR ≤ 97, 7 ≤ ND ≤ 61, varied the voxel volume by up to 192-fold and investigated the impact on the accuracy and precision of commonly derived parameters. Results: For maximal scan efficiency, the accuracy and precision of the mean diffusivity is optimised when SNR is maximised at the expense of ND. With typical parameter settings used clinically, we estimate that fractional anisotropy may be overestimated by up to 13% with an uncertainty of ±30%, while the precision of the sheetlet angles may be as poor as ±31°. Although the helix angle has better precision of ±14°, the transmural range of helix angles may be under-estimated by up to 30° in apical and basal slices, due to partial volume and tapering myocardial geometry. Conclusions: These findings inform a baseline of understanding upon which further issues inherent to in-vivo cardiac DTI, such as motion, strain and perfusion, can be considered. Furthermore, the reported bias and reproducibility provides a context in which to assess cardiac DTI biomarkers

    FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis

    Get PDF
    Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ

    Variability of disk emission in pre-main sequence and related stars. II. Variability in the gas and dust emission of the Herbig Fe star SAO 206462

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We present 13 epochs of near-infrared (0.8-5 μm) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Brα, Brγ, Paβ, Paγ, Paδ, Paepsilon, and the 0.8446 μm line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 × 10–8 M ☉ yr–1 was derived from the Brγ and Paβ lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 μm was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on timescales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer timescales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on timescales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer timescales that have been sampled so far.This work was supported by NASA ADP grants NNH06CC28C and NNX09AC73G, Hubble Space Telescope grants HST-GO-10764 and HST-GO-10864, Chilean National TAC grants CNTAC-010A-064

    Environmental Health Disparities: A Framework Integrating Psychosocial and Environmental Concepts

    Get PDF
    Although it is often acknowledged that social and environmental factors interact to produce racial and ethnic environmental health disparities, it is still unclear how this occurs. Despite continued controversy, the environmental justice movement has provided some insight by suggesting that disadvantaged communities face greater likelihood of exposure to ambient hazards. The exposure–disease paradigm has long suggested that differential “vulnerability” may modify the effects of toxicants on biological systems. However, relatively little work has been done to specify whether racial and ethnic minorities may have greater vulnerability than do majority populations and, further, what these vulnerabilities may be. We suggest that psychosocial stress may be the vulnerability factor that links social conditions with environmental hazards. Psychosocial stress can lead to acute and chronic changes in the functioning of body systems (e.g., immune) and also lead directly to illness. In this article we present a multidisciplinary framework integrating these ideas. We also argue that residential segregation leads to differential experiences of community stress, exposure to pollutants, and access to community resources. When not counterbalanced by resources, stressors may lead to heightened vulnerability to environmental hazards

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation
    corecore