2,769 research outputs found
Subgenual Cingulum Microstructure Supports Control of Emotional Conflict
This is the final version of the article. Available from Oxford University Press via the DOI in this record.Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r= -0.53;P= 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli.P.A.K. was funded by the Higher Education Funding Council for Wales (HEFCW) and an Academy of Medical Sciences and Wellcome Trust Starter Grant (AJ17102004). M.M. received an EPSRC Doctoral Training Grant. This work was also supported by a Marie Curie fellowship to Marcel Meyer and received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 267171. D.K.J. was funded by HEFCW and received grants from the MS Society, a Wellcome Trust New Investigator Award, a Wellcome Trust Multi User Equipment Grant and Medical Research Council, and Wellcome Trust project grants. A.N.D. was supported by the Wellcome Trust PhD schemes. N.L. was funded by HEFCW. A.D.L. was funded by HEFCW. He also received grants from the ESRC, Wellcome Trust, and NISCHR. Funding to pay the Open Access publication charges for this article was provided by The Wellcome Trust
Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MSn techniques
The number of so-called new psychoactive substances (NPS) is still increasing by modification of the chemical structure of known (scheduled) drugs. As analogues of amphetamines, 2-aminopropyl-benzofurans were sold. They were consumed because of their euphoric and empathogenic effects. After the 5-(2-aminopropyl)benzofurans, the 6-(2-aminopropyl)benzofuran isomers appeared. Thus, the question arose whether the metabolic fate, the mass spectral fragmentation, and the detectability in urine are comparable or different and how an intake can be differentiated. In the present study, 6-(2-aminopropyl)benzofuran (6-APB) and its N-methyl derivative 6-MAPB (N-methyl-6-(2-aminopropyl)benzofuran) were investigated to answer these questions. The metabolites of both drugs were identified in rat urine and human liver preparations using GC-MS and/or liquid chromatography-high resolution-mass spectrometry (LC-HR-MSn). Besides the parent drug, the main metabolite of 6-APB was 4-carboxymethyl-3-hydroxy amphetamine and the main metabolites of 6-MAPB were 6-APB (N-demethyl metabolite) and 4-carboxymethyl-3-hydroxy methamphetamine. The cytochrome P450 (CYP) isoenzymes involved in the 6-MAPB N-demethylation were CYP1A2, CYP2D6, and CYP3A4. An intake of a common users’ dose of 6-APB or 6-MAPB could be confirmed in rat urine using the authors’ GC-MS and the LC-MSn standard urine screening approaches with the corresponding parent drugs as major target allowing their differentiation. Furthermore, a differentiation of 6-APB and 6-MAPB in urine from their positional isomers 5-APB and 5-MAPB was successfully performed after solid phase extraction and heptafluorobutyrylation by GC-MS via their retention times
Designing Engaging Learning Experiences in Programming
In this paper we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies to explore how programming tasks could be framed to motivate learners. Our empirical findings from these four field studies are summarized here, with a particular focus upon one – Whack a Mole – which compared the use of a physical interface with the use of a screen-based equivalent interface to obtain insights into what made for an engaging learning experience. Emotions reported by two sets of participant undergraduate students were analyzed, identifying the links between the emotions experienced during programming and their origin. Evidence was collected of the very positive emotions experienced by learners programming with a physical interface (Arduino) in comparison with a similar program developed using a screen-based equivalent interface. A follow-up study provided further evidence of the motivation of personalized design of programming tangible physical artefacts. Collating all the evidence led to the design of a set of ‘Learning Dimensions’ which may provide educators with insights to support key design decisions for the creation of engaging programming learning experiences
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece
Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
- …