42 research outputs found

    Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models

    Full text link
    The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3 Wilson lines to the MSSM with three right-handed neutrino supermultiplets and gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is analyzed. It is shown that there is a unique basis for which the initial soft supersymmetry breaking parameters are uncorrelated and for which the U(1) x U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines "turn on" at different scales, there is an intermediate regime with either a left-right or a Pati-Salam type model. We compute their spectra directly from string theory, and adjust the associated mass parameter so that all gauge parameters exactly unify. A detailed analysis of the running gauge couplings and soft gaugino masses is presented.Comment: 59 pages, 9 figure

    The charcot foot in diabetes.

    Get PDF
    The diabetic Charcot foot syndrome is a serious and potentially limb-threatening lower-extremity complication of diabetes. First described in 1883, this enigmatic condition continues to challenge even the most experienced practitioners. Now considered an inflammatory syndrome, the diabetic Charcot foot is characterized by varying degrees of bone and joint disorganization secondary to underlying neuropathy, trauma, and perturbations of bone metabolism. An international task force of experts was convened by the American Diabetes Association and the American Podiatric Medical Association in January 2011 to summarize available evidence on the pathophysiology, natural history, presentations, and treatment recommendations for this entity

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Threshold for detection of diabetic peripheral sensory neuropathy using a range of research grade monofilaments in persons with Type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>To identify the threshold of reduced sensory perception in Type 2 diabetes mellitus (Type 2 DM) using a range of research grade monofilaments.</p> <p>Methods</p> <p>Three groups of participants were recruited into a between subject, cross-sectional study. Group 1(NEW), persons with Type 2 DM diagnosed for less than 2 years (<it>n </it>= 80); Group 2 (EST) persons with Type 2 DM diagnosed for more than 2 years (<it>n </it>= 91), and Group 3, a Comparison group without Type 2 DM (<it>n </it>= 73), resulted in a total study population, <it>n </it>= 244. Research grade monofilaments (2, 4, 6, 8 and 10-gram) were employed using standardised protocol, at 6 sites on the plantar aspect of both feet. The demographic and anthropometric measures of gender, age, height, weight, body mass index (BMI), blood pressure and duration of Type 2 DM since diagnosis (if applicable) of the participants were analysed.</p> <p>Results</p> <p>Perception of the research grade monofilaments differed significantly between the 3 groups (p < 0.05). The 6-gram monofilament was found to be the threshold of normal perception, based on 90% of the Comparison group perceiving the 6-gram monofilament at all sites in contrast to 64% of NEW and 48% of EST groups.</p> <p>Conclusion</p> <p>The 6-gram monofilament was identified as the threshold of normal sensory perception. Inability to perceive the 6-gram monofilament indicates, when using the method described in this study, that diminution of sensory perception is evident. Employing a range of monofilaments, 6, 8 and 10-grams in Type 2 DM foot screening would allow the clinical detection of deteriorating sensory perception and enable implementation of foot protection strategies at an earlier stage than is currently practised.</p

    Opening practice: Supporting Reproducibility and Critical Spatial Data Science

    Get PDF
    This paper reflects on a number of trends towards a more open and reproducible approach to geographic and spatial data science over recent years. In particular, it considers trends towards Big Data, and the impacts this is having on spatial data analysis and modelling. It identifies a turn in academia towards coding as a core analytic tool, and away from proprietary software tools offering ‘black boxes’ where the internal workings of the analysis are not revealed. It is argued that this closed form software is problematic and considers a number of ways in which issues identified in spatial data analysis (such as the MAUP) could be overlooked when working with closed tools, leading to problems of interpretation and possibly inappropriate actions and policies based on these. In addition, this paper considers the role that reproducible and open spatial science may play in such an approach, taking into account the issues raised. It highlights the dangers of failing to account for the geographical properties of data, now that all data are spatial (they are collected somewhere), the problems of a desire for n = all observations in data science and it identifies the need for a critical approach. This is one in which openness, transparency, sharing and reproducibility provide a mantra for defensible and robust spatial data science
    corecore