30 research outputs found

    Deterministic processes structure bacterial genetic communities across an urban landscape

    Get PDF
    Land-use change is predicted to act as a driver of zoonotic disease emergence through human exposure to novel microbial diversity, but evidence for the effects of environmental change on microbial communities in vertebrates is lacking. We sample wild birds at 99 wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing to characterise bacterial genes known to be carried on mobile genetic elements (MGEs) within avian-borne Escherichia coli (n=241). By modelling the diversity of bacterial genes encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic forms of urban environmental change, we demonstrate that communities of avian-borne bacterial genes are shaped by the assemblage of co-existing avian, livestock and human communities, and the habitat within which they exist. In showing that non-random processes structure bacterial genetic communities in urban wildlife, these findings suggest that it should be possible to forecast the effects of urban land-use change on microbial diversity

    Compton Thick AGN: the dark side of the X-ray background

    Full text link
    The spectrum of the hard X-ray background records the history of accretion processes integrated over the cosmic time. Several pieces of observational and theoretical evidence indicate that a significant fraction of the energy density is obscured by large columns of gas and dust. The absorbing matter is often very thick, with column densities exceeding N_H > 1.5 10^24 cm-2, the value corresponding to unity optical depth for Compton scattering. These sources are called ``Compton thick'' and appear to be very numerous, at least in the nearby universe. Although Compton thick Active Galactic Nuclei (AGN) are thought to provide an important contribution to the overall cosmic energy budget, their space density and cosmological evolution are poorly known. The properties of Compton thick AGN are reviewed here, with particular emphasis on their contributions to the extragalactic background light in the hard X-ray and infrared bands.Comment: 28 pages, 10 figures. Review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academi

    Lower Blood Pressure Is Not Associated With Decreased Arterial Spin Labeling Estimates of Perfusion in Intracerebral Hemorrhage

    Full text link
    Background: Subacute ischemic lesions in intracerebral hemorrhage (ICH) have been hypothesized to result from hypoperfusion. Although studies of cerebral blood flow (CBF) indicate modest hypoperfusion in ICH, these investigations have been limited to early time points. Arterial spin labeling (ASL), a magnetic resonance imaging technique, can be used to measure CBF without a contrast agent. We assessed CBF in patients with ICH using ASL and tested the hypothesis that CBF is related to systolic blood pressure (SBP). Methods and Results: In this cross-sectional study, patients with ICH were assessed with ASL at 48 hours, 7 days, and/or 30 days after onset. Relative CBF (rCBF; ratio of ipsilateral/contralateral perfusion) was measured in the perihematomal regions, hemispheres, border zones, and the perilesional area in patients with diffusion-weighted imaging hyperintensities. Twenty-patients (65% men; mean±SD age, 68.5±12.7 years) underwent imaging with ASL at 48 hours (N=12), day 7 (N=6), and day 30 (N=11). Median (interquartile range) hematoma volume was 13.1 (6.3–19.3) mL. Mean±SD baseline SBP was 185.4±25.5 mm Hg. Mean perihematomal rCBF was 0.9±0.2 at 48 hours at all time points. Baseline SBP and other SBP measurements were not associated with a decrease in rCBF in any of the regions of interest (P≥0.111). rCBF did not differ among time points in any of the regions of interest (P≥0.097). Mean perilesional rCBF was 1.04±0.65 and was unrelated to baseline SBP (P=0.105). Conclusions: ASL can be used to measure rCBF in patients with acute and subacute ICH. Perihematomal CBF was not associated with SBP changes at any time point. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00963976

    Statistical shape methodology for the analysis of helices

    No full text
    Consider a helix in three-dimensional space along which a sequence of equally spaced points is observed, subject to statistical noise. For data coming from a single helix, a two-stage algorithm based on a profile likelihood is developed to compute the maximum likelihood estimate of the helix parameters. Statistical properties of the estimator are studied and comparisons are made to other estimators found in the literature. Next a likelihood ratio test is developed to test if there is a change point in the helix, splitting the data into two sub-helices. The shapes of protein α-helices are used to illustrate the methodology

    The KMOS Cluster Survey (KCS). III. Fundamental plane of cluster galaxies at z ≃ 1.80 in JKCS 041

    No full text
    We present data for 16 galaxies in the overdensity JKCS 041 at z ≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of z form = 3.0 ± 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (∼3%) but a significant contribution from stellar-mass-normalized parameters (∼42%). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the eastextending group had typically older galaxies (2.1 +0.3 0.2 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift

    The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6

    No full text
    The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older
    corecore