31 research outputs found

    Interspecific Variation in Life History Relates to Antipredator Decisions by Marine Mesopredators on Temperate Reefs

    Get PDF
    As upper-level predatory fishes become overfished, mesopredators rise to become the new ‘top’ predators of over-exploited marine communities. To gain insight into ensuing mechanisms that might alter indirect species interactions, we examined how behavioural responses to an upper-level predatory fish might differ between mesopredator species with different life histories. In rocky reefs of the northeast Pacific Ocean, adult lingcod (Ophiodon elongatus) are upper-level predators that use a sit-and-wait hunting mode. Reef mesopredators that are prey to adult lingcod include kelp greenling (Hexagrammos decagrammus), younger lingcod, copper rockfish (Sebastes caurinus) and quillback rockfish (S. maliger). Across these mesopredators species, longevity and age at maturity increases and, consequently, the annual proportion of lifetime reproductive output decreases in the order just listed. Therefore, we hypothesized that the level of risk taken to acquire resources would vary interspecifically in that same order. During field experiments we manipulated predation risk with a model adult lingcod and used fixed video cameras to quantify interactions between mesopredators and tethered prey (Pandalus shrimps). We predicted that the probabilities of inspecting and attacking tethered prey would rank from highest to lowest and the timing of these behaviours would rank from earliest to latest as follows: kelp greenling, lingcod, copper rockfish, and quillback rockfish. We also predicted that responses to the model lingcod, such as avoidance of interactions with tethered prey, would rank from weakest to strongest in the same order. Results were consistent with our predictions suggesting that, despite occupying similar trophic levels, longer-lived mesopredators with late maturity have stronger antipredator responses and therefore experience lower foraging rates in the presence of predators than mesopredators with faster life histories. The corollary is that the fishery removal of top predators, which relaxes predation risk, could potentially lead to stronger increases in foraging rates for mesopredators with slower life histories

    Validation of differential gene expression algorithms: Application comparing fold-change estimation to hypothesis testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sustained research on the problem of determining which genes are differentially expressed on the basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance method that measures agreement among gene lists have been introduced to assess various aspects of differential gene expression detection. This method has the advantage of basing its assessment solely on the results of real data analyses, but as it requires examining gene lists of given sizes, it may be unstable.</p> <p>Results</p> <p>Two methodologies for assessing predictive error are described: a cross-validation method and a posterior predictive method. As a nonparametric method of estimating prediction error from observed expression levels, cross validation provides an empirical approach to assessing algorithms for detecting differential gene expression that is fully justified for large numbers of biological replicates. Because it leverages the knowledge that only a small portion of genes are differentially expressed, the posterior predictive method is expected to provide more reliable estimates of algorithm performance, allaying concerns about limited biological replication. In practice, the posterior predictive method can assess when its approximations are valid and when they are inaccurate. Under conditions in which its approximations are valid, it corroborates the results of cross validation. Both comparison methodologies are applicable to both single-channel and dual-channel microarrays. For the data sets considered, estimating prediction error by cross validation demonstrates that empirical Bayes methods based on hierarchical models tend to outperform algorithms based on selecting genes by their fold changes or by non-hierarchical model-selection criteria. (The latter two approaches have comparable performance.) The posterior predictive assessment corroborates these findings.</p> <p>Conclusions</p> <p>Algorithms for detecting differential gene expression may be compared by estimating each algorithm's error in predicting expression ratios, whether such ratios are defined across microarray channels or between two independent groups.</p> <p>According to two distinct estimators of prediction error, algorithms using hierarchical models outperform the other algorithms of the study. The fact that fold-change shrinkage performed as well as conventional model selection criteria calls for investigating algorithms that combine the strengths of significance testing and fold-change estimation.</p

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021

    Leaseholders and Service Charges in Former Local Authority Flats

    No full text
    corecore