184 research outputs found

    Pedometry and 'peer support' in older Chinese adults: a 12-month cluster randomised controlled trial

    Get PDF
    Session - Exercise/RehabilitationResearch Dissemination ReportsThere is a need to increase physical activity to attenuate age-related morbidity. This 12-month factorial design cluster trial randomized 399 volunteers from 24 centres to buddy peer support, pedometry, or control group. Data were anaysed using last-observation carried-forward and intention-to-treat methods. Compared to the controls, participants in the pedometry group increased their levels of physical activity energy expenditure significantly, as did those in the buddy group. As recorded by the International Physical Activity Questionnaire [IPAQ], the respective increases amounted to 1820 (95% confidence interval [CI], 1360-2290) and 1260 (95% CI, 780-17 460) metabolic equivalent of task (MET).min.wk-1. The buddy group also had significantly improved aerobic fitness after adjustment for body weight (12%; 95% CI, 4-21%), but this did not attain significance in the pedometry group (7%; 95% CI, -1 to 15%). Our results suggest that recourse to pedometers and the buddy peer support system is simple means of increasing physical activity in older subjects.published_or_final_versio

    Indium tin oxide nanowires manufactured via printing and laser irradiation

    Get PDF
    Metallic and semiconductor nanowires can provide dramatically increased electrical and optical properties in a wide range of fields, ranging from photovoltaics to sensors and catalysts. In this research, a rapid manufacturing process has been developed for printing indium tin oxide microparticles and converting them into nanowires. Microparticle indium tin oxide (ITO) inks were formulated and printed. These were then converted into hierarchical nanowire films via laser irradiation (980 nm, NIR) with raster speeds of 40 mm sβˆ’1 in air, much faster compared to traditional manufacturing processes. For a 4 cm2 film, only 40 s of processing were required. A full materials characterization was performed on the materials pre and post laser processing with the most probable conversion mechanism found to be a laser induced carbothermal reduction process. Microstructural, chemical, and crystallographic evidence of the laser induced carbothermal reduction process were derived from SEM, XRD, XPS and TEM analysis. Compared to conventionally heat-treated printed samples, laser processing was found to increase the conductivity of the printed ITO from 0.88% to 40.47% bulk conductivity. This research demonstrates the ability of printing and laser processing to form nanowires in a high-speed manufacturing context, thereby enabling the development of printed non-transparent ITO nanowire electronics and devices

    RNA Is an Integral Component of Chromatin that Contributes to Its Structural Organization

    Get PDF
    Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%–5% of total chromatin-associated nucleic acids, are polyAβˆ’ and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with Ξ±-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity

    Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While standard reductionist approaches have provided some insights into specific gene polymorphisms and molecular pathways involved in disease pathogenesis, our understanding of complex traits such as atherosclerosis or type 2 diabetes remains incomplete. Gene expression profiling provides an unprecedented opportunity to understand complex human diseases by providing a global view of the multiple interactions across the genome that are likely to contribute to disease pathogenesis. Thus, the goal of gene expression profiling is not to generate lists of differentially expressed genes, but to identify the physiologic or pathogenic processes and structures represented in the expression profile.</p> <p>Methods</p> <p>RNA was separately extracted from peripheral blood neutrophils and mononuclear leukocytes, labeled, and hybridized to genome level microarrays to generate expression profiles of children with polyarticular juvenile idiopathic arthritis, juvenile dermatomyositis relative to childhood controls. Statistically significantly differentially expressed genes were identified from samples of each disease relative to controls. Functional network analysis identified interactions between products of these differentially expressed genes.</p> <p>Results</p> <p><it>In silico </it>models of both diseases demonstrated similar features with properties of scale-free networks previously described in physiologic systems. These networks were observable in both cells of the innate immune system (neutrophils) and cells of the adaptive immune system (peripheral blood mononuclear cells).</p> <p>Conclusion</p> <p>Genome-level transcriptional profiling from childhood onset rheumatic diseases suggested complex interactions in two arms of the immune system in both diseases. The disease associated networks showed scale-free network patterns similar to those reported in normal physiology. We postulate that these features have important implications for therapy as such networks are relatively resistant to perturbation.</p

    Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae

    Get PDF
    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA+ B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA+ B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity

    Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells

    Get PDF
    The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells

    Comparative Developmental Expression Profiling of Two C. elegans Isolates

    Get PDF
    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism

    Does economic development contribute to sex differences in ischaemic heart disease mortality? Hong Kong as a natural experiment using a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male excess risk of premature ischemic heart disease (IHD) mortality may be partially due to an unknown macro-environmental influence associated with economic development. We examined whether excess male risk of IHD mortality was higher with birth in an economically developed environment.</p> <p>Methods</p> <p>We used multivariable logistic regression in a population-based case-control study of all adult deaths in Hong Kong Chinese in 1998 to compare sex differences in IHD mortality (1,189 deaths in men, 1,035 deaths in women and 20,842 controls) between Hong Kong residents born in economically developed Hong Kong or in contemporaneously undeveloped Guangdong province in China.</p> <p>Results</p> <p>Younger (35–64 years) native-born Hong Kong men had a higher risk of IHD death than such women (odds ratio 2.91, 95% confidence interval 1.66 to 5.13), adjusted for age, socio-economic status and lifestyle. There was no such sex difference in Hong Kong residents who had migrated from Guangdong. There were no sex differences in pneumonia deaths by birth place.</p> <p>Conclusion</p> <p>Most of these people migrated as young adults; we speculate that environmentally mediated differences in pubertal maturation (when the male disadvantage in lipids and fat patterning emerges) may contribute to excess male premature IHD mortality in developed environments.</p

    HIF-1 Regulates Iron Homeostasis in Caenorhabditis elegans by Activation and Inhibition of Genes Involved in Iron Uptake and Storage

    Get PDF
    Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage
    • …
    corecore