16 research outputs found

    Lymphatic Filariasis Control in Tanzania: Effect of Six Rounds of Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission.

    Get PDF
    Control of lymphatic filariasis (LF) in most countries of sub-Saharan Africa is based on annual mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. We present findings from a detailed study on the effect of six rounds of MDA with this drug combination as implemented by the National Lymphatic Filariasis Elimination Programme (NLFEP) in a highly endemic rural area of north-eastern Tanzania.\ud The effect of treatment on transmission and human infection was monitored in a community- and a school-based study during an 8-year period (one pre-intervention and 7 post-intervention years) from 2003 to 2011. Before intervention, 24.5% of the community population had microfilariae (mf) in the blood, 53.3% had circulating filarial antigens (CFA) and 78.9% had specific antibodies to the recombinant filarial antigen Bm14. One year after the sixth MDA, these values had decreased considerably to 2.7%, 19.6% and 27.5%, respectively. During the same period, the CFA prevalence among new intakes of Standard 1 pupils in 10 primary schools decreased from 25.2% to 5.6%. In line with this, transmission by the three vectors (Anopheles gambiae, An. funestus and Culex quinquefasciatus) as determined by dissection declined sharply (overall vector infectivity rate by 99.3% and mean monthly transmission potential by 99.2% between pre-intervention and fifth post-intervention period). A major shift in vector species composition, from predominantly anopheline to almost exclusively culicine was observed over the years. This may be largely unrelated to the MDAs but may have important implications for the epidemiology of LF in the area. Six MDAs caused considerable decrease in all the measured indices for transmission and human infection. In spite of this, indices were still relatively high in the late period of the study, and it may take a long time to reach the recommended cut-off levels for interruption of transmission unless extra efforts are made. These should include increased engagement of the target population in the control activities, to ensure higher treatment coverage. It is expected that the recent initiative to distribute insecticide impregnated bed nets to every household in the area will also contribute towards reaching the goal of successful LF elimination

    Analysing and Recommending Options for Maintaining Universal Coverage with Long-Lasting Insecticidal Nets: The Case of Tanzania in 2011.

    Get PDF
    Tanzania achieved universal coverage with long-lasting insecticidal nets (LLINs) in October 2011, after three years of free mass net distribution campaigns and is now faced with the challenge of maintaining high coverage as nets wear out and the population grows. A process of exploring options for a continuous or "Keep-Up" distribution system was initiated in early 2011. This paper presents for the first time a comprehensive national process to review the major considerations, findings and recommendations for the implementation of a new strategy. Stakeholder meetings and site visits were conducted in five locations in Tanzania to garner stakeholder input on the proposed distribution systems. Coverage levels for LLINs and their decline over time were modelled using NetCALC software, taking realistic net decay rates, current demographic profiles and other relevant parameters into consideration. Costs of the different distribution systems were estimated using local data. LLIN delivery was considered via mass campaigns, Antenatal Care-Expanded Programme on Immunization (ANC/EPI), community-based distribution, schools, the commercial sector and different combinations of the above. Most approaches appeared unlikely to maintain universal coverage when used alone. Mass campaigns, even when combined with a continuation of the Tanzania National Voucher Scheme (TNVS), would produce large temporal fluctuations in coverage levels; over 10 years this strategy would require 63.3 million LLINs and a total cost of 444millionUSD.Communitymechanisms,whileabletodelivertherequirednumbersofLLINs,wouldrequireamassivescaleupinmonitoring,evaluationandsupervisionsystemstoensureaccurateapplicationofidentificationcriteriaatthecommunitylevel.SchoolbasedapproachescombinedwiththeexistingTNVSwouldreachmostTanzanianhouseholdsanddeliver65.4millionLLINsover10yearsatatotalcostof444 million USD. Community mechanisms, while able to deliver the required numbers of LLINs, would require a massive scale-up in monitoring, evaluation and supervision systems to ensure accurate application of identification criteria at the community level. School-based approaches combined with the existing TNVS would reach most Tanzanian households and deliver 65.4 million LLINs over 10 years at a total cost of 449 million USD and ensure continuous coverage. The cost of each strategy was largely driven by the number of LLINs delivered. The most cost-efficient strategy to maintain universal coverage is one that best optimizes the numbers of LLINs needed over time. A school-based approach using vouchers targeting all students in Standards 1, 3, 5, 7 and Forms 1 and 2 in combination with the TNVS appears to meet best the criteria of effectiveness, equity and efficiency

    Detectability of Plasmodium falciparum clones

    Get PDF
    BACKGROUND: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. METHODS: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. RESULTS: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. CONCLUSIONS: A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week apart as statistically independent

    Linkage Group Selection: Towards Identifying Genes Controlling Strain Specific Protective Immunity in Malaria

    Get PDF
    Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites

    Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for <it>Plasmodium falciparum </it>resistance against CQ and sulphadoxine/pyrimethamine (SP).</p> <p>Methods</p> <p>Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for <it>P. falciparum </it>chloroquine resistance transporter gene (<it>pfcrt</it>)-76 polymorphisms, mutation <it>pfcrt-</it>S163R and the antifolate resistance-associated mutations dihydrofolate reductase (<it>dhfr</it>)-C59R and dihydropteroate synthase (<it>dhps</it>)-K540E. Direct DNA sequencing of the <it>pfcrt </it>gene from three representative field samples was carried out after DNA amplification of the 13 exons of the <it>pfcrt </it>gene.</p> <p>Results</p> <p>Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant <it>pfcrt </it>T76 was 98% in 112 amplified pre-treatment samples. The presence of <it>pfcrt </it>T76 was poorly predictive of <it>in vivo </it>CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of <it>dhfr </it>Arg-59 mutation in 99 amplified samples was 5%, while the <it>dhps </it>Glu-540 was not detected in any of 119 amplified samples. Sequencing the <it>pfcrt </it>gene confirmed that Yemeni CQ resistant <it>P. falciparum </it>carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371.</p> <p>Conclusion</p> <p>This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR <it>P. falciparum </it>parasites from Yemen. Mutant <it>pfcrt</it>T76 is highly prevalent but it is a poor predictor of treatment failure in the study population. The prevalence of mutation <it>dhfr</it>Arg59 is suggestive of emerging resistance to SP, which is currently a component of the recommended combination treatment of falciparum malaria in Yemen. More studies on these markers are recommended for surveillance of resistance in the study area.</p

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p

    Red blood cell alloimmunization in sickle cell disease patients in Tanzania

    No full text
    Objective: Alloimmunization is a recognized complication of red blood cell (RBC) transfusion and causes delayed hemolytic transfusion reactions and provides problems sourcing compatible blood for future transfusions. Theobjective of this study was to determine the frequency of RBC  alloimmunization in SCD patients in Tanzania where pretransfusion screening for alloantibodies is not practiced.Methods: In a cross-sectional study, SCD patients at Muhimbili Hospital Sickle Cell Clinic, Dar es Salaam, Tanzania, were investigated. The demographic characteristics and transfusion history were recorded. Blood samples were drawn from consenting, previously transfused patients and RBC alloimmunization was demonstrated using immunohematologic techniques.Results: There were 365 patients (median age, 16 years; 55.3% female) and they had received a median of 2 transfusion episodes. Fifteen patients (4.1%) possessed RBC alloantibodies. A total of 61 alloantibodies was found; 16 (26.2%) and 11 (18.0%), were directed against Kell and Rh blood group antigens, respectively.Conclusion: The rate of RBC alloimmunization in Tanzanian SCD patients was 4.1%. The low transfusion load may explain this immunization  frequency. Nevertheless, our study confirms the significance of RBC alloimmunization as a complication in Tanzanian SCD patients. Therefore, there is need to improve immunohematologic testing in Tanzania so that RBC alloimmunization and its consequences may be prevented.Key Words: Red blood cell alloimmunization, Tanzanian sickle cell disease patient

    Newborn screening for hemoglobinopathies at Muhimbili National Hospital, Dar es Salaam – Tanzania

    No full text
    Background: Newborn screening (NBS) for hemoglobinopathies is important for the early detection and effective management of affected children.Objectives: To determine the frequency of occurrence, types of, and factors associated with abnormal haemoglobins in newborns at Muhimbili National Hospital (MNH), Dar es Salaam.Methods: A hospital-based, descriptive cross-sectional design was used to recruit newborns at Muhimbili National Hospital in 2009. Blood specimens were analyzed by High Performance Liquid Chromatography and alkaline Hb electrophoresis to determine the type and proportion of hemoglobin variants. Complete blood counts including red cell indices were done by automated hematology analyzer.Results: Out of 2,053 samples analyzed, the prevalence of hemoglobinopathies was 18.2% (n=374). The percentages of children with defined hemoglobinopathies included 12.6% (n=258) with sickle cell trait (Hb FAS); 0.9% (n=19) as sickle cell carrier or Hb S Beta+ -thalassemia (Hb FSA); 0.54% (n=11) had SCA or Hb S Beta0-thalassemia (Hb FS); one Hb FA-D variant and 5.3% (n=109) with possibly α-thalassemia (Hb Bart’s). The frequency of occurrence of abnormal haemoglobins were highest among participants whose parental origin were Costal Regions, 35.6% (n=133) and Lake Zone, 10.2% (n=38). Participants from the Northern Region of Tanzania had the lowest frequency of occurrence, 6.7% (n=25) (X2 = 37.7, p &lt; 0.01). Having abnormal haemoglobins increased the likelihood of newborns being born at low gestational age (23.8%) by 1.5 fold as compared to newborns (16.3%) born without abnormal haemoglobins (X2=11.7, p=0.001).Conclusions: The frequency of occurrence of abnormal hemoglobin is high and fulfills the World Health Organization (WHO) criteria of a disorder of public health significance. Therefore, newborn screening programme is highly recommended in Tanzania. The ethnic origin of the parents and the gestational age were significantly associated with occurrence of abnormal haemoglobins.Keywords: Newborn screening, neonates , abnormal haemoglobins (Hemoglobinopathies), frequency of occurrence, High Performance Liquid Chromatograph
    corecore