211 research outputs found

    Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    c-erbB-2 is not a major factor in the development of colorectal cancer

    Get PDF
    We have investigated c-erbB-2 protein expression in a large cohort of well-characterized colorectal tumours, and in a subset of lymph node metastases. We have also evaluated a Val655Ile single nucleotide polymorphism, which is associated with an increased risk of breast cancer, in a subset of the colorectal cancer patients and in healthy control subjects. Immunohistochemical studies revealed that while 81.8% of tumours expressed c-erbB-2, in the majority of cases equivalent levels of c-erb-B2 were seen in adjacent normal mucosa. Colon tumours were significantly more likely to express c-erbB-2 than rectal tumours (P=0.015). Only 52.4% of the metastases displayed staining patterns concordant with their primary tumour, indicating that determination of c-erbB-2 protein in colorectal tumours cannot predict the status of lymph node metastases. PCR–RFLP analysis of the Val655Ile single nucleotide polymorphism demonstrated that allele frequencies were identical between colorectal cancer patients and a control group of Caucasian subjects (Ile=0.80 and Val=0.20 in each case), indicating that it is not related to the risk of developing colorectal cancer in this population. Furthermore, there was no relationship between c-erbB-2 protein expression and gene polymorphism (P=0.58). In terms of prognosis, no association was seen between either c-erbB-2 protein expression or the presence of the Val allele and patient survival (P>0.05 in each case), suggesting that c-erbB-2 is not a prognostic marker in colorectal cancer

    An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice

    Get PDF
    Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI

    Expression of miRNAs and Their Cooperative Regulation of the Pathophysiology in Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of injury-related death and disability worldwide. Effective treatment for TBI is limited and many TBI patients suffer from neuropsychiatric sequelae. The molecular and cellular mechanisms underlying the neuronal damage and impairment of mental abilities following TBI are largely unknown. Here we used the next generation sequencing platform to delineate miRNA transcriptome changes in the hippocampus at 24 hours and 7 days following TBI in the rat controlled cortical impact injury (CCI) model, and developed a bioinformatic analysis to identify cellular activities that are regulated by miRNAs differentially expressed in the CCI brains. The results of our study indicate that distinct sets of miRNAs are regulated at different post-traumatic times, and suggest that multiple miRNA species cooperatively regulate cellular pathways for the pathological changes and management of brain injury. The distinctive miRNAs expression profiles at different post-CCI times may be used as molecular signatures to assess TBI progression. In addition to known pathophysiological changes, our study identifies many other cellular pathways that are subjected to modification by differentially expressed miRNAs in TBI brains. These pathways can potentially be targeted for development of novel TBI treatment

    Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma

    Get PDF
    Background: Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. Methods: Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. Results: Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFa, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFa and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. Conclusions: Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region

    Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury

    Get PDF
    Following spinal cord injury (SCI), semaphorin 3A (Sema3A) prevents axonal regeneration through binding to the neuropilin-1 (NRP-1)/PlexinA4 receptor complex. Here, we show that galectin-1 (Gal-1), an endogenous glycan-binding protein, selectively bound to the NRP-1/PlexinA4 receptor complex in injured neurons through a glycan-dependent mechanism, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. Although both Gal-1 and its monomeric variant contribute to de-activation of microglia, only high concentrations of wild-type Gal-1 (which co-exists in a monomer-dimer equilibrium) bind to the NRP-1/PlexinA4 receptor complex and promote axonal regeneration. Our results show that Gal-1, mainly in its dimeric form, promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A binding to NRP-1/PlexinA4 complex, supporting the use of this lectin for the treatment of SCI patients.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Pasquini, Juana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pasquini, Laura Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; Argentin
    corecore