44 research outputs found

    Older age does not influence CD4 cell recovery in HIV-1 infected patients receiving Highly Active Anti Retroviral Therapy

    Get PDF
    BACKGROUND: Diagnosis of HIV infection is recently occurring with increasing frequency in middle-aged and in older individuals. As HAART became available, a minimal beneficial effect on immunological outcome in older in respect of younger subjects has been reported. In fact, both the intensity and the rapidity of the immunological response appeared to be reduced in elderly subjects. On the contrary, only few reports have indicated a similar immunological outcome both in older and younger HIV-positive subjects. Interestingly, older age did not seem to significantly affect the long-term virological outcome of HAART treated subjects. METHODS: To characterise epidemiological and clinical features of older HIV+ subjects, a prospective case-control study was performed: 120 subjects ā‰„ 50 and 476 between 20 and 35 years were initially compared. Subsequently, to better define the impact of HAART on their viro-immunological response, 81 older were compared with 162 younger subjects. RESULTS: At baseline cases presented significantly lower TCD4+ cell number and were more frequently affected by comorbid conditions. Under HAART a statistically significant increase in TCD4+ cell number was observed in cases and controls. At multivariate analysis, there was no statistically significant difference between cases and controls regarding viro-immunological response. CONCLUSIONS: Although older subjects present a more severe HIV infection, they can achieve, under HAART, the same viro-immunological success as the younger individuals

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI

    Get PDF
    Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome

    Update on twice-daily bromfenac sodium sesquihydrate to treat postoperative ocular inflammation following cataract extraction

    No full text
    Ester Carre&amp;ntilde;o1, Alejandro Portero2, David J Galarreta1,3, Jos&amp;eacute; M Herreras1,31Ocular Immunology Unit-IOBA (Instituto Universitario de Oftalmobiolog&amp;iacute;a), University of Valladolid, Campus Miguel Delibes, Valladolid, Spain; 2Ocular Immunology Unit, Hospital La Zarzuela, Madrid, Spain; 3Ocular Immunology Unit, Hospital Cl&amp;iacute;nico Universitario de Valladolid, Valladolid, SpainAbstract: Ophthalmic bromfenac sodium sesquihydrate is a topically applied selective cyclooxygenase (COX)-2 inhibitor. It is similar to amfenac, except for a bromine atom at the C4 of the benzoyl ring position, which markedly affects its in vitro and in vivo potency, extends the duration of anti-inflammatory activity, and enhances its inhibitory effect on COX-2 absorption across the cornea and penetration into ocular tissues. The United States Food and Drug Administration approved bromfenac in 2005 for the treatment of postoperative inflammation and the reduction of ocular pain in patients who have undergone cataract surgery. Nonsteroidal anti-inflammatory drugs (NSAIDs), and among them bromfenac, could be even more effective than steroids at reestablishing the blood&amp;ndash;aqueous barrier, as revealed by flare on slit-lamp examination and as quantitatively measured using ocular fluorophotometry. Similar to other NSAIDs, it has a role in inhibiting intraoperative miosis during cataract surgery. However, bromfenac also seems to be useful in other situations, such as refractive surgery, allergic conjunctivitis (not useful in dry eye), choroidal neovascularization, and even ocular oncology. No reports of systemic toxicity have been published and bromfenac has good topical tolerance with a low incidence of adverse effects.Keywords: bromfenac, ophthalmic nonsteroidal anti-inflammatory drugs, inflammation, cataract surger
    corecore