235 research outputs found

    A Unifying Theory of Biological Function

    Get PDF
    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories

    Robotic milking technologies and renegotiating situated ethical relationships on UK dairy farms

    Get PDF
    Robotic or automatic milking systems (AMS) are novel technologies that take over the labor of dairy farming and reduce the need for human-animal interactions. Because robotic milking involves the replacement of 'conventional' twice-a-day milking managed by people with a system that supposedly allows cows the freedom to be milked automatically whenever they choose, some claim robotic milking has health and welfare benefits for cows, increases productivity, and has lifestyle advantages for dairy farmers. This paper examines how established ethical relations on dairy farms are unsettled by the intervention of a radically different technology such as AMS. The renegotiation of ethical relationships is thus an important dimension of how the actors involved are re-assembled around a new technology. The paper draws on in-depth research on UK dairy farms comparing those using conventional milking technologies with those using AMS. We explore the situated ethical relations that are negotiated in practice, focusing on the contingent and complex nature of human-animal-technology interactions. We show that ethical relations are situated and emergent, and that as the identities, roles, and subjectivities of humans and animals are unsettled through the intervention of a new technology, the ethical relations also shift. © 2013 Springer Science+Business Media Dordrecht

    Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor

    Get PDF
    Apixaban (BMS-562247; 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide), a direct inhibitor of activated factor X (FXa), is in development for the prevention and treatment of various thromboembolic diseases. With an inhibitory constant of 0.08 nM for human FXa, apixaban has greater than 30,000-fold selectivity for FXa over other human coagulation proteases. It produces a rapid onset of inhibition of FXa with association rate constant of 20 μM−1/s approximately and inhibits free as well as prothrombinase- and clot-bound FXa activity in vitro. Apixaban also inhibits FXa from rabbits, rats and dogs, an activity which parallels its antithrombotic potency in these species. Although apixaban has no direct effects on platelet aggregation, it indirectly inhibits this process by reducing thrombin generation. Pre-clinical studies of apixaban in animal models have demonstrated dose-dependent antithrombotic efficacy at doses that preserved hemostasis. Apixaban improves pre-clinical antithrombotic activity, without excessive increases in bleeding times, when added on top of aspirin or aspirin plus clopidogrel at their clinically relevant doses. Apixaban has good bioavailability, low clearance and a small volume of distribution in animals and humans, and a low potential for drug–drug interactions. Elimination pathways for apixaban include renal excretion, metabolism and biliary/intestinal excretion. Although a sulfate conjugate of Ο-demethyl apixaban (O-demethyl apixaban sulfate) has been identified as the major circulating metabolite of apixaban in humans, it is inactive against human FXa. Together, these non-clinical findings have established the favorable pharmacological profile of apixaban, and support the potential use of apixaban in the clinic for the prevention and treatment of various thromboembolic diseases

    (Certified) Humane Violence? Animal Production, the Ambivalence of Humanizing the Inhumane, and What International Humanitarian Law Has to Do with It

    Get PDF
    The chapter draws a comparison with the self-certifying of production methods as ‘humane’ or animal-friendly in the labelling of animal products—that is, according to companies’ own self-imposed codes of conduct. It likens the idea of humanizing animal slaughter, factory farms, and other forms of production to the notion of humanizing warfare. Like international humanitarian law (IHL), animal welfare law is marked by the tension inherent in its attempt to humanize innately inhumane practices. Given these parallels, the analysis of animal welfare law might benefit from existing insights into the potential and limits of IHL. Both areas of law endorse a principle of ‘humanity’ while arguably facilitating and legitimizing the use of violence, and might thereby ultimately perpetuate the suffering of living beings. The implicit justification of violence percolating from the IHL-like animal ‘protection’ laws could only be outweighed by complementing this body of law with a ius contra bellum for animals

    Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells

    Get PDF
    Citation: Hand, E. S., Haller, S. L., Peng, C., Rothenburg, S., & Hersperger, A. R. (2015). Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells. Plos One, 10(3), 15. doi:10.1371/journal.pone.0119189As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV

    CD4+ T Cell Effects on CD8+ T Cell Location Defined Using Bioluminescence

    Get PDF
    T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are “helped” by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell “help” is to program the homing potential of CD8+ T cells

    CD4+ T Cell-Derived IL-2 Signals during Early Priming Advances Primary CD8+ T Cell Responses

    Get PDF
    Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation

    Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an <it>in vitro </it>artery model.</p> <p>Methods</p> <p>A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery.</p> <p>Results</p> <p>At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W.</p> <p>Conclusion</p> <p>We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.</p
    corecore