780 research outputs found

    Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study.

    No full text
    Objectives: To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods: Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results: The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133Β±36 n, post: 180Β±39 n), whereas the control group showed no change (pre: 152Β±36 n, post: 157Β±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion: Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures, patellar dislocation and patellofemoral pain

    Low complexity synchronisation, equalisation and diversity combining for home-based Hiperlan/1 transceivers

    Get PDF

    Low frequency sound propagation in activated carbon

    Get PDF
    Activated carbon can adsorb and desorb gas molecules onto and off its surface. Research has examined whether this sorption affects low frequency sound waves, with pressures typical of audible sound, interacting with granular activated carbon. Impedance tube measurements were undertaken examining the resonant frequencies of Helmholtz resonators with different backing materials. It was found that the addition of activated carbon increased the compliance of the backing volume. The effect was observed up to the highest frequency measured (500 Hz), but was most significant at lower frequencies (at higher frequencies another phenomenon can explain the behavior). An apparatus was constructed to measure the effective porosity of the activated carbon as well as the number of moles adsorbed at sound pressures between 104 and 118 dB and low frequencies between 20 and 55 Hz. Whilst the results were consistent with adsorption affecting sound propagation, other phenomena cannot be ruled out. Measurements of sorption isotherms showed that additional energy losses can be caused by water vapor condensing onto and then evaporating from the surface of the material. However, the excess absorption measured for low frequency sound waves is primarily caused by decreases in surface reactance rather than changes in surface resistance

    On the Role of the Patella, ACL and Joint Contact Forces in the Extension of the Knee

    Get PDF
    Traditional descriptions of the knee suggest that the function of the patella is to facilitate knee extension by increasing the moment arm of the quadriceps muscles. Through modelling and evidence from the literature it is shown in this paper that the presence of the patella makes the ability of the quadriceps to rotate the thigh greater than their ability to rotate the tibia. Furthermore, this difference increases as the knee is flexed, thus demonstrating a pattern that is consistent with many human movements. This paper also shows that the anterior cruciate ligament plays a previously unheralded role in extending the shank and that translation at the tibiofemoral and patellofemoral joints is important in improving the capacity for thigh rotation when the knee is flexed. This study provides new insights as to how the structure of the knee is adapted to its purpose and illustrates how the functional anatomy of the knee contributes to its extension function

    Death and Emergency Readmission of Infants Discharged After Interventions for Congenital Heart Disease: A National Study of 7643 Infants to Inform Service Improvement.

    Get PDF
    Improvements in hospital-based care have reduced early mortality in congenital heart disease. Later adverse outcomes may be reducible by focusing on care at or after discharge. We aimed to identify risk factors for such events within 1 year of discharge after intervention in infancy and, separately, to identify subgroups that might benefit from different forms of intervention.Cardiac procedures performed in infants between 2005 and 2010 in England and Wales from the UK National Congenital Heart Disease Audit were linked to intensive care records. Among 7976 infants, 333 (4.2%) died before discharge. Of 7643 infants discharged alive, 246 (3.2%) died outside the hospital or after an unplanned readmission to intensive care (risk factors were age, weight-for-age, cardiac procedure, cardiac diagnosis, congenital anomaly, preprocedural clinical deterioration, prematurity, ethnicity, and duration of initial admission; c-statistic 0.78 [0.75-0.82]). Of the 7643, 514 (6.7%) died outside the hospital or had an unplanned intensive care readmission (same risk factors but with neurodevelopmental condition and acquired cardiac diagnosis and without preprocedural deterioration; c-statistic 0.78 [0.75-0.80]). Classification and regression tree analysis were used to identify 6 subgroups stratified by the level (3-24%) and nature of risk for death outside the hospital or unplanned intensive care readmission based on neurodevelopmental condition, cardiac diagnosis, congenital anomaly, and duration of initial admission. An additional 115 patients died after planned intensive care admission (typically following elective surgery).Adverse outcomes in the year after discharge are of similar magnitude to in-hospital mortality, warrant service improvements, and are not confined to diagnostic groups currently targeted with enhanced monitoring

    Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria
    • …
    corecore