145 research outputs found

    Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria

    Get PDF
    BACKGROUND: Treatments for uncomplicated falciparum malaria should have high cure rates. The World Health Organization has recently set a target cure rate of 95% assessed at 28 days. The use of more effective drugs, with longer periods of patient follow-up, and parasite genotyping to distinguish recrudescence from reinfection raise issues related to the design and interpretation of antimalarial treatment trials in uncomplicated falciparum malaria which are discussed here. METHODS: The importance of adequate follow-up is presented and the advantages and disadvantages of non-inferiority trials are discussed. The different methods of interpreting trial results are described, and the difficulties created by loss to follow-up and missing or indeterminate genotyping results are reviewed. CONCLUSION: To characterize cure rates adequately assessment of antimalarial drug efficacy in uncomplicated malaria requires a minimum of 28 days and as much as 63 days follow-up after starting treatment. The longer the duration of follow-up in community-based assessments, the greater is the risk that this will be incomplete, and in endemic areas, the greater is the probability of reinfection. Recrudescence can be distinguished from reinfection using PCR genotyping but there are commonly missing or indeterminate results. There is no consensus on how these data should be analysed, and so a variety of approaches have been employed. It is argued that the correct approach to analysing antimalarial drug efficacy assessments is survival analysis, and patients with missing or indeterminate PCR results should either be censored from the analysis, or if there are sufficient data, results should be adjusted based on the identified ratio of new infections to recrudescences at the time of recurrent parasitaemia. Where the estimated cure rates with currently recommended treatments exceed 95%, individual comparisons with new regimens should generally be designed as non-inferiority trials with sample sizes sufficient to determine adequate precision of cure rate estimates (such that the lower 95% confidence interval bound exceeds 90%)

    Omentalisation as adjunctive treatment of an infected femoral nonunion fracture: a case report

    Get PDF
    A three-year-old male working border collie with an infected femoral nonunion fracture was managed in a two-stage procedure involving debridement and omentalisation, followed by stabilisation with a bone plate and an autogenous cancellous bone graft. Osseous union was documented radiographically 16 weeks after surgery. Telephone follow-up one year later revealed the dog had returned to full working function without evidence of lameness. To the authors' knowledge, this is the first clinical case described in the veterinary literature using omentalisation as an adjunct to the management of an infected, biologically inactive nonunion fracture

    Reverse Engineering the Yeast RNR1 Transcriptional Control System

    Get PDF
    Transcription is controlled by multi-protein complexes binding to short non-coding regions of genomic DNA. These complexes interact combinatorially. A major goal of modern biology is to provide simple models that predict this complex behavior. The yeast gene RNR1 is transcribed periodically during the cell cycle. Here, we present a pilot study to demonstrate a new method of deciphering the logic behind transcriptional regulation. We took regular samples from cell cycle synchronized cultures of Saccharomyces cerevisiae and extracted nuclear protein. We tested these samples to measure the amount of protein that bound to seven different 16 base pair sequences of DNA that have been previously identified as protein binding locations in the promoter of the RNR1 gene. These tests were performed using surface plasmon resonance. We found that the surface plasmon resonance signals showed significant variation throughout the cell cycle. We correlated the protein binding data with previously published mRNA expression data and interpreted this to show that transcription requires protein bound to a particular site and either five different sites or one additional sites. We conclude that this demonstrates the feasibility of this approach to decipher the combinatorial logic of transcription

    Ethological principles predict the neuropeptides co-opted to influence parenting

    Get PDF
    Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting

    DMA, a Bisbenzimidazole, Offers Radioprotection by Promoting NFκB Transactivation through NIK/IKK in Human Glioma Cells

    Get PDF
    BACKGROUND: Ionizing radiation (IR) exposure often occurs for human beings through occupational, medical, environmental, accidental and/or other sources. Thus, the role of radioprotector is essential to overcome the complex series of overlapping responses to radiation induced DNA damage. METHODS AND RESULTS: Treatment of human glioma U87 cells with DMA (5- {4-methylpiperazin-1-yl}-2-[2'-(3, 4-dimethoxyphenyl)-5'-benzimidazolyl] in the presence or absence of radiation uncovered differential regulation of an array of genes and proteins using microarray and 2D PAGE techniques. Pathway construction followed by relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of MAP3K14 (NFκB inducing kinase, NIK) as the candidate gene affected in response to DMA. Subsequently, over expression and knock down of NIK suggested that DMA affects NFκB inducing kinase mediated phosphorylation of IKKα and IKKβ both alone and in the presence of ionizing radiation (IR). The TNF-α induced NFκB dependent luciferase reporter assay demonstrated 1.65, 2.26 and 3.62 fold increase in NFκB activation at 10, 25 and 50 µM DMA concentrations respectively, compared to control cells. This activation was further increased by 5.8 fold in drug + radiation (50 µM +8.5 Gy) treated cells in comparison to control. We observed 51% radioprotection in control siRNA transfected cells that attenuated to 15% in siRNA NIK treated U87 cells, irradiated in presence of DMA at 24 h. CONCLUSIONS: Our studies show that NIK/IKK mediated NFκB activation is more intensified in cells over expressing NIK and treated with DMA, alone or in combination with ionizing radiation, indicating that DMA promotes NIK mediated NFκB signaling. This subsequently leads to the radioprotective effect exhibited by DMA

    Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    Get PDF
    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species

    High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of the origins, distribution, and inheritance of variation in the malaria parasite (<it>Plasmodium falciparum</it>) genome is crucial for understanding its evolution; however the 81% (A+T) genome poses challenges to high-throughput sequencing technologies. We explore the viability of the Roche 454 Genome Sequencer FLX (GS FLX) high throughput sequencing technology for both whole genome sequencing and fine-resolution characterization of genetic exchange in malaria parasites.</p> <p>Results</p> <p>We present a scheme to survey recombination in the haploid stage genomes of two sibling parasite clones, using whole genome pyrosequencing that includes a sliding window approach to predict recombination breakpoints. Whole genome shotgun (WGS) sequencing generated approximately 2 million reads, with an average read length of approximately 300 bp. <it>De novo </it>assembly using a combination of WGS and 3 kb paired end libraries resulted in contigs ≤ 34 kb. More than 8,000 of the 24,599 SNP markers identified between parents were genotyped in the progeny, resulting in a marker density of approximately 1 marker/3.3 kb and allowing for the detection of previously unrecognized crossovers (COs) and many non crossover (NCO) gene conversions throughout the genome.</p> <p>Conclusions</p> <p>By sequencing the 23 Mb genomes of two haploid progeny clones derived from a genetic cross at more than 30× coverage, we captured high resolution information on COs, NCOs and genetic variation within the progeny genomes. This study is the first to resequence progeny clones to examine fine structure of COs and NCOs in malaria parasites.</p

    World Antimalarial Resistance Network (WARN) II: In vitro antimalarial drug susceptibility

    Get PDF
    Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy

    Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs

    Get PDF
    Epidemiological studies have shown not only a relationship between the intake of dietary lipids and an increased risk of developing metastatic prostate cancer, but also the type of lipid intake that influences the risk of metastatic prostate cancer. The Omega-6 poly-unsaturated fatty acid, Arachidonic acid, has been shown to enhance the proliferation of malignant prostate epithelial cells and increase the risk of advanced prostate cancer. However, its role in potentiating the migration of cancer cells is unknown. Here we show that arachidonic acid at concentrations ⩽5 μM is a potent stimulator of malignant epithelial cellular invasion, which is able to restore invasion toward hydrocortisone-deprived adipocyte-free human bone marrow stroma completely. This observed invasion is mediated by the arachidonic acid metabolite prostaglandin E2 and is inhibited by the Omega-3 poly-unsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid at a ratio of 1 : 2 Omega-3 : Omega-6, and by the COX-2 inhibitor NS-398. These results identify a mechanism by which arachidonic acid may potentiate the risk of metastatic migration and secondary implantation in vivo, a risk which can be reduced with the uptake of Omega-3 poly-unsaturated fatty acids

    Estimating the Fitness Cost of Escape from HLA Presentation in HIV-1 Protease and Reverse Transcriptase

    Get PDF
    Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general
    corecore