44 research outputs found

    Tegumentary leishmaniasis and coinfections other than HIV

    Get PDF
    <div><p>Background</p><p>Tegumentary leishmaniasis (TL) is a disease of skin and/or mucosal tissues caused by <i>Leishmania</i> parasites. TL patients may concurrently carry other pathogens, which may influence the clinical outcome of TL.</p><p>Methodology and principal findings</p><p>This review focuses on the frequency of TL coinfections in human populations, interactions between <i>Leishmania</i> and other pathogens in animal models and human subjects, and implications of TL coinfections for clinical practice. For the purpose of this review, TL is defined as all forms of cutaneous (localised, disseminated, or diffuse) and mucocutaneous leishmaniasis. Human immunodeficiency virus (HIV) coinfection, superinfection with skin bacteria, and skin manifestations of visceral leishmaniasis are not included. We searched MEDLINE and other databases and included 73 records: 21 experimental studies in animals and 52 studies about human subjects (mainly cross-sectional and case studies). Several reports describe the frequency of <i>Trypanosoma cruzi</i> coinfection in TL patients in Argentina (about 41%) and the frequency of helminthiasis in TL patients in Brazil (15% to 88%). Different hypotheses have been explored about mechanisms of interaction between different microorganisms, but no clear answers emerge. Such interactions may involve innate immunity coupled with regulatory networks that affect quality and quantity of acquired immune responses. Diagnostic problems may occur when concurrent infections cause similar lesions (e.g., TL and leprosy), when different pathogens are present in the same lesions (e.g., <i>Leishmania</i> and <i>Sporothrix schenckii</i>), or when similarities between phylogenetically close pathogens affect accuracy of diagnostic tests (e.g., serology for leishmaniasis and Chagas disease). Some coinfections (e.g., helminthiasis) appear to reduce the effectiveness of antileishmanial treatment, and drug combinations may cause cumulative adverse effects.</p><p>Conclusions and significance</p><p>In patients with TL, coinfection is frequent, it can lead to diagnostic errors and delays, and it can influence the effectiveness and safety of treatment. More research is needed to unravel how coinfections interfere with the pathogenesis of TL.</p></div

    Epidemiology of American Tegumentary Leishmaniasis and Trypanosoma cruzi Infection in the Northwestern Argentina

    Get PDF
    Background. Endemic areas of tegumentary leishmaniasis (TL) in Salta, Argentina, present some overlap zones with the geographical distribution of Chagas disease, with mixed infection cases being often detected. Objectives. The purpose of this study was to determine the magnitude of Leishmania sp. infection and potential associated risk factors, the serologic prevalence of T. cruzi, and the presence of T. cruzi-Leishmania sp. mixed infection in a region of the northwest of Argentina. Methods. Crosssectional studies were conducted to detect TL prevalence and T. cruzi seroprevalence. A case-control study was conducted to examine leishmaniasis risk factors. Results. Prevalence of TL was 0.17%, seroprevalence of T. cruzi infection was 9.73%, and mixed infection proportion-within the leishmaniasic patients group-was 16.67%. The risk factors associated with TL transmission were sex, age, exposure to bites at work, staying outdoors more than 10 hours/day, bathing in the river, and living with people who had lesions or were infected during the study. Discussion. The endemic pattern of TL seems to involve exposure of patients to vectors in wild as well as peridomestic environment. Cases of T. cruzi infection are apparently due to migration. Therefore, a careful epidemiological surveillance is necessary due to the contraindication of antimonial administration to chagasic patients

    Cost-Effectiveness of Chagas Disease Vector Control Strategies in Northwestern Argentina

    Get PDF
    Despite decreasing rates of prevalence and incidence, Chagas disease remains a serious problem in Latin America, especially for the rural poor. Without vaccines, control and prevention rely mostly on residual spraying of insecticides. Under the aegis of the Southern Cone Initiative, and in agreement with global trends in decentralization of the health systems, in 1992 the Argentinean vector control launched a new vector control program based on community participation. The present study represents the first thorough evaluation of the overall performance of such vector control program and the first comparative assessment of the cost-effectiveness of different vector control strategies in a highly endemic rural area of northwestern Argentina. Supported by results of independent studies, the present work shows that in rural, poor and dispersed areas of the Gran Chaco region, the implementation of a mixed (i.e., vertical attack phase followed by horizontal surveillance) strategy constantly supervised and supported by national or local vector control programs would be the most cost-effective option to interrupt vector-borne transmission of Chagas disease

    Exploring the association between Trypanosoma cruzi infection in rural communities and environmental changes in the southern Gran Chaco

    Full text link
    The association between land use and land cover changes between 1979-2004 in a 2.26-million-hectare area south of the Gran Chaco region and Trypanosoma cruzi infection in rural communities was analysed. The extent of cultural land, open and closed forests and shrubland up to 3,000 m around rural communities in the north, northwest and west of the province of Córdoba was estimated using Landsat satellite imagery. The T. cruzi prevalence was estimated with a cross-sectional serological survey conducted in the rural communities. The land cover showed the same patterns in the 1979, 1999 and 2004 satellite imagery in both the northwest and west regions, with shrinking regions of cultured land and expanding closed forests away from the community. The closed forests and agricultural land coverage in the north region showed the same trend as in the northwest and west regions in 1979 but not in 1999 or 2004. In the latter two years, the coverage remote from the communities was either constant or changed in opposite ways from that of the northwest and west regions. The changes in closed forests and cultured vegetation alone did not have a significant, direct relationship with the occurrence of rural communities with at least one person infected by T. cruzi. This study suggests that the overall decrease in the prevalence of T. cruzi is a consequence of a combined effect of vector control activities and changes in land use and land cover

    Trypanosoma cruzi : New insights on ecophylogeny and hybridization by multigene sequencing of three nuclear and one maxicircle genes

    No full text
    Natural populations of Trypanosoma cruzi are structured into five genetic lineages, T cruzi I and T. cruzi II a to e, as the result of clonal evolution with rare genetic recombination events. To explore more in depth these phenomenons, a multigene sequencing approach was used, for the first time in the case of T. cruzi. Three nuclear loci and a maxicircle locus were sequenced on 18 T. cruzi stocks. Sequences were used to build phylogenetic trees from each locus and from concatenated sequences of all loci. The data confirmed the hybrid origin of DTUs IId and IIe, as the result of an ancient genetic recombination between strains pertaining to IIb and IIc. The data confirmed also a hybrid origin of DTUs IIa and IIc. Contrary to previous reports, we failed to detect mosaic genes. The phylogenetic relationship between DTUs and the respective roles of recombination and selection were tested
    corecore