89 research outputs found

    Overexpression of miR‑145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation

    Get PDF
    In the present study, we sought to elucidate the effect of miR‑145 on glioma cell progression and its mechanisms of action. We examined the effects of miR‑145 on proliferation and invasion of U87 glioma cells and on capillary tube formation. Our data show that restoration of miR‑145 in U87 glioma cells significantly reduced their in vitro proliferation, invasion and angiogenesis. However, decreased miR‑145 expression promoted U87 glioma cell proliferation, invasion and angiogenesis, and reduced-expression of miR‑145 increased ADAM17 and EGFR expression in U87 cells. Overexpression of miR‑145 reduced ADAM17 and EGFR expression. VEGF secretion and VEGF expression were decreased by increased miR‑145 expression in U87 cells and were reversed by miR‑145 downregulation in vitro. Nude mice with intracerebral implantation of U87 overexpressing miR‑145 cells exhibited significantly reduced tumor growth and promoted survival compared with control groups. Taken together, these results suggest a role for miR‑145 as a tumor suppressor which inhibits glioma cell proliferation, invasion and angiogenesis in vitro and reduces glioma growth in vivo

    On the mode-segregated aerosol particle number concentration load : contributions of primary and secondary particles in Hyytiälä and Nanjing

    Get PDF
    Aerosol particle concentrations in the atmosphere are governed by their sources and sinks. Sources include directly-emitted (primary) and secondary aerosol particles formed from gas-phase precursor compounds. The relative importance of primary and secondary aerosol particles varies regionally and with time. In this work, we investigated primary and secondary contributions to mode-segregated particle number concentrations by using black carbon as a tracer for the primary aerosol number concentration. We studied separately nucleation, Aitken and accumulation mode concentrations at a rural boreal forest site (Hyytiala, Finland) and in a rather polluted megacity environment (Nanjing, China) using observational data from 2011 to 2014. In both places and in all the modes, the majority of particles were estimated to be of secondary origin. Even in Nanjing, only about half of the accumulation mode particles were estimated to be of primary origin. Secondary particles dominated particularly in the nucleation and Aitken modes.Peer reviewe

    Observations of aerosol optical properties at a coastal site in Hong Kong, South China

    Get PDF
    Temporal variations in aerosol optical properties were investigated at a coastal station in Hong Kong based on the field observation from February 2012 to February 2015. At 550 nm, the average light-scattering (151 +/- 100Mm(-1) / and absorption coefficients (8.3 +/- 6.1Mm(-1) / were lower than most of other rural sites in eastern China, while the single-scattering albedo (SSA = 0.93 +/- 0.05) was relatively higher compared with other rural sites in the Pearl River Delta (PRD) region. Correlation analysis confirmed that the darkest aerosols were smaller in particle size and showed strong scattering wavelength dependencies, indicating possible sources from fresh emissions close to the measurement site. Particles with D-p of 200-800 nm were less in number, yet contributed the most to the light-scattering coefficients among submicron particles. In summer, both Delta BC / Delta CO and SO2 / BC peaked, indicating the impact of nearby combustion sources on this site. Multi-year backward Lagrangian particle dispersion modeling (LPDM) and potential source contribution (PSC) analysis revealed that these particles were mainly from the air masses that moved southward over Shenzhen and urban Hong Kong and the polluted marine air containing ship exhausts. These fresh emission sources led to low SSA during summer months. For winter and autumn months, contrarily, Delta BC / Delta CO and SO2 / BC were relatively low, showing that the site was more under influence of well-mixed air masses from long-range transport including from South China, East China coastal regions, and aged aerosol transported over the Pacific Ocean and Taiwan, causing stronger abilities of light extinction and larger variability of aerosol optical properties. Our results showed that ship emissions in the vicinity of Hong Kong could have visible impact on the light-scattering and absorption abilities as well as SSA at Hok Tsui.Peer reviewe

    Estimating cloud condensation nuclei number concentrations using aerosol optical properties : role of particle number size distribution and parameterization

    Get PDF
    The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between NCCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (σsp) of PM10 particles. The analysis first showed that the dependence of NCCN on supersaturation (SS) can be described by a logarithmic fit in the range SS 4. At SS >0.4 % the average bias ranged from ∼0.7 to ∼1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, ∼1.4–1.9. In other words, at SS >0.4 % NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured NCCN varied from ∼0.5 to ∼0.8. To study the physical explanation of the relationships between NCCN and AOPs, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation showed that the relationships of NCCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of NCCN and AOPs were similar to those of the observed ones.The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol-cloud interactions within warm clouds. Long-term CCN number concentration (N-CCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating N-CCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between N-CCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Angstrom exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (sigma(sp)) of PM10 particles. The analysis first showed that the dependence of N-CCN on supersaturation (SS) can be described by a logarithmic fit in the range SS 4. At SS > 0 :4% the average bias ranged from similar to 0.7 to similar to 1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, similar to 1.4-1.9. In other words, at SS > 0:4% N-CCN was estimated with an average uncertainty of approximately 30% by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Angstrom exponent (SAE). The squared correlation coefficients between the AOP-derived and measured N-CCN varied from similar to 0.5 to similar to 0.8. To study the physical explanation of the relationships between N-CCN and AOPs, lognormal unimodal particle size distributions were generated and N-CCN and AOPs were calculated. The simulation showed that the relationships of N-CCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of N-CCN and AOPs were similar to those of the observed ones.Peer reviewe

    Cluster Analysis of Submicron Particle Number Size Distributions at the SORPES Station in the Yangtze River Delta of East China

    Get PDF
    Submicron particles in polluted regions have received much attention because of their influences on human health and climate. A k-means clustering technique was performed on a data set of particle number size distributions (PNSD) that was obtained over more than 3 years in the Yangtze River Delta (YRD) region of East China. With simultaneous measurements of meteorological conditions, trace gases and aerosol compositions, seven clusters were categorized and interpreted. Cluster 1 and cluster 2, which accounted for 9.9% of the total PNSD data, were attributed to new particle formation (NPF) and vehicle exhaust emissions with different intensities; Cluster 3 and Cluster 4, which accounted for 10.5% of the total PNSD data, were related to the growth of nucleation mode particles; Cluster 5, which accounted for 37.9% of the total data, was attributed to the humid YRD background; and Cluster 6 and Cluster 7, which accounted for 41.6% of the total data set, were both pollution-related clusters with similar mass concentrations but completely different PNSD. Although the PM2.5 mass concentrations were somewhat similar, the particle number concentrations of the accumulation mode particles could vary by more than one order of magnitude from the urban background cluster to the pollution-related clusters. The cluster proximity diagram and conversion flow chart of clusters clearly show the influence of NPF and growth on haze, as well as the conversion between background and polluted conditions. This study highlights the importance of PNSD for understanding urban air quality and recommends the clustering technique for analyzing complex PNSD datasets. Plain Language Summary Submicron particles in polluted regions have significant influences on human health and climate. Based on long-term field measurements, we used the k-means clustering technique to characterize the number size distributions of submicron particles in the Yangtze River Delta (YRD) of China. Seven clusters were categorized and interpreted. New particle formation (NPF), fossil fuel combustion and biomass burning are the main sources of submicron particles in the YRD. The influences of NPF and growth on haze, as well as the conversion between background and polluted conditions, were found. Key Points New particle formation (NPF), fossil fuel combustion and biomass burning are the main sources of submicron particles in Nanjing The influences of NPF and growth on haze, and the conversion between background and pollution conditions were found The k-means cluster technique is an effective tool to categorize particle number size distribution data setPeer reviewe

    Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride

    Get PDF
    Titanium dioxide (TiO2) is extensively used with the process of urbanization and potentially influences atmospheric chemistry, which is yet unclear. In this work, we demonstrated strong production of Cl-2 from illuminated KCl-coated TiO2 membranes and suggested an important daytime source of chlorine radicals. We found that water and oxygen were required for the reactions to proceed, and Cl-2 production increased linearly with the amount of coated KCl, humidity of the carrier gas, and light intensity. These results suggested that water promotes the reactivity of coated KCl via interaction with the crystal lattice to release free chloride ions (Cl-). The free Cl- transfer charges to O-2 via photoactivated TiO2 to form Cl-2 and probably the O-2(-) radical. In addition to Cl-2, ClO and HOCl were also observed via the complex reactions between Cl/Cl-2 and HOx. An intensive campaign was conducted in Shanghai, during which evident daytime peaks of Cl-2 were observed. Estimated Cl-2 production from TiO2 photocatalysis can be up to 0.2 ppb/h when the TiO2-containing surface reaches 20% of the urban surface, and highly correlated to the observed Cl-2. Our results suggest a non-negligible role of TiO2 in atmospheric photochemistry via altering the radical budget.Peer reviewe

    Toward Building a Physical Proxy for Gas-Phase Sulfuric Acid Concentration Based on Its Budget Analysis in Polluted Yangtze River Delta, East China

    Get PDF
    Gaseous sulfuric acid (H2SO4) is a crucial precursor for secondary aerosol formation, particularly for new particle formation (NPF) that plays an essential role in the global number budget of aerosol particles and cloud condensation nuclei. Due to technology challenges, global-wide and long-term measurements of gaseous H2SO4 are currently very challenging. Empirical proxies for H2SO4 have been derived mainly based on short-term intensive campaigns. In this work, we performed comprehensive measurements of H2SO4 and related parameters in the polluted Yangtze River Delta in East China during four seasons and developed a physical proxy based on the budget analysis of gaseous H2SO4. Besides the photo-oxidation of SO2, we found that primary emissions can contribute considerably, particularly at night. Dry deposition has the potential to be a non-negligible sink, in addition to condensation onto particle surfaces. Compared with the empirical proxies, the newly developed physical proxy demonstrates extraordinary stability in all the seasons and has the potential to be widely used to improve the understanding of global NPF fundamentally.Peer reviewe

    Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    Get PDF
    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55% for all the regenerated HULIS particles at the temperature of 280 degrees C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93% in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45% in 2 : 2 mixed samples, and to 70% in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate tends to decrease the volatility of atmospheric organic compounds. Our results demonstrate that HULIS are important low-volatility, or even extremely low-volatility, compounds in the organic-aerosol phase. As important formation pathways of atmospheric HULIS, multiphase processes, including oxidation, oligomerization, polymerization and interaction with inorganic salts, are indicated to be important sources of low-volatility and extremely low-volatility species of organic aerosols.Peer reviewe

    Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China

    Get PDF
    New particle formation (NPF) has been investigated intensively during the last 2 decades because of its influence on aerosol population and the possible contribution to cloud condensation nuclei. However, intensive measurements and modelling activities on this topic in urban metropolitan areas in China with frequent high-pollution episodes are still very limited. This study provides results from a comprehensive modelling study on the occurrence of NPF events in the western part of the Yangtze River Delta (YRD) region, China. The comprehensive modelling system, which combines the WRF-Chem (the Weather Research and Forecasting model coupled with Chemistry) regional chemical transport model and the MALTE-BOX sectional box model (the model to predict new aerosol formation in the lower troposphere), was shown to be capable of simulating atmospheric nucleation and subsequent growth. Here we present a detailed discussion of three typical NPF days, during which the measured air masses were notably influenced by either anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. Overall, simulated NPF events were generally in good agreement with the corresponding measurements, enabling us to get further insights into NPF processes in the YRD region. Based on the simulations, we conclude that biogenic organic compounds, particularly monoterpenes, play an essential role in the initial condensational growth of newly formed clusters through their low-volatility oxidation products. Although some uncertain-ties remain in this modelling system, this method provides a possibility to better understand particle formation and growth processes.Peer reviewe
    corecore