
1. Introduction
Atmospheric aerosols, especially submicron particles, have received much attention because of their in-
fluences on climate, air quality, and human health (Atkinson et al., 2014; Heal et al., 2012; IPCC, 2013; 
Knibbs et al., 2011; Kulmala et al., 2016; Rosenfeld et al., 2019; Wu et al., 2019). Both the climate and human 
health effects of atmospheric aerosols depend on particle sizes (Kerminen et al., 2012; Salma et al., 2015). 
Particles larger than ∼50–100  nm not only can serve as cloud condensation nuclei but can also scatter 
solar radiation more effectively, which influences the Earth’s radiative balance (Schmale et al., 2018; Shen 
et al., 2019). Recent evidence has shown that ultrafine particles smaller than 50 nm can also be activated in 
deep convective clouds (Fan et al., 2018). Moreover, ultrafine particles can penetrate into and be deposited 
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in the deeper parts of the respiratory system or can even penetrate the pulmonary epithelium and reach 
the cardiovascular system and thereby are more harmful to human health (Chen et al., 2016; Downward 
et al., 2018). Therefore, long-term measurements of particle number size distributions (PNSD), as one of the 
most important properties of atmospheric aerosols, are crucial for understanding the climate and human 
health effects of atmospheric aerosols.

In addition to being closely related to the impact of aerosols on climate and public health, PNSD also indi-
cate the sources and atmospheric processes of aerosols. Various anthropogenic and natural emissions and 
multiple aerosol processes, such as new particle formation (NPF), condensation growth, evaporation, coag-
ulation, and wet and dry deposition, can influence and cause drastic variations in PNSD (Asmi et al., 2011; 
Brines et al., 2015; Harrison et al., 2019; Liu et al., 2014; Wang et al., 2013). In urban environments, es-
pecially with growing urbanization, PNSD have become increasingly important for evaluating air quality 
and understanding haze formation. Due to the large size and complexity of PNSD data sets, the clustering 
technique, for example, k-means clustering, is an appropriate way to investigate the source apportionment 
of the number and size characteristics of submicron particles (Agudelo-Castaneda et al., 2019; Beddows 
et al., 2009; Brines et al., 2014, 2015; Sabaliauskas et al., 2013; Väänänen et al., 2013; Wegner et al., 2012). 
The k-means clustering technique categorizes PNSD data into reduced clusters with similar characteristics, 
such as their size peaks and temporal trends (Beddows et al., 2009). By using the k-means clustering tech-
nique, vehicle traffic was determined to be one of the main sources of submicron particles in many urban 
areas (Brines et al., 2015; Dall'Osto et al., 2012). Sub-10 nm particles can form behind exhaust tailpipes 
when the hot exhaust gases are diluted and cooled by the ambient air (Guo et al., 2020; Rönkkö et al., 2017). 
Although NPF events are expected to be less favored in polluted areas because of high condensation sinks, 
surprising events are observed with high frequency and have become another main source of submicron 
particles in urban areas (Chu et al., 2019; Kerminen et al., 2018; Kulmala et al., 2017; Wang, Wu et al., 2017). 
NPF events were even found to be one of the causes of haze formation in the megacities of China (Guo 
et al., 2014; Kulmala et al., 2021; Yao et al., 2018).

The Yangtze River Delta (YRD) region of East China is one of the hotspots of urban air pollution because of 
its high urbanization and population density (Li et al., 2011; Tie & Cao, 2009). Due to the complex anthropo-
genic emissions and feedbacks with the East Asian monsoons, the air pollution in the YRD is unique (Ding 
et al., 2019; Ding, Fu, Yang, Sun, Zheng et al., 2013). A number of studies have addressed air pollution in 
the YRD region, but they have mainly focused on particle mass concentrations and chemical compositions 
(Cheng et al., 2014; Ding et al., 2019; Sun et al., 2018; Xie et al., 2015). Only a limited number of long-term 
measurements of submicron PNSD have been conducted in the YRD region. Qi et al.  (2015) analyzed a 
2 year PNSD data set from the western part of the YRD region and found much higher submicron par-
ticle number concentrations compared with cities in Europe and North America. Seasonal variations in 
the PNSD with obvious signals from vehicle traffic in the cold season and NPF in the warm season were 
observed in the YRD, which demonstrate the complex sources of submicron particles (Ling et al., 2019; 
Qi et  al.,  2015). Although several studies have found that NPF and primary emissions from traffic and 
power plants have significant contributions to submicron particles (Du et al., 2012; Gao et al., 2009; Peng 
et al., 2014), the sources and aerosol processes governing the PNSD of submicron particles in polluted urban 
environments, such as the YRD region, are not well evaluated by applying clustering techniques to PNSD 
datasets. Meanwhile, NPF events with high formation and growth rates have frequently been observed 
in the YRD region even under high condensation sinks (Dai et al., 2017; Qi et al., 2015; Xiao et al., 2015). 
Sulfuric acid and dimethylamine were found to play an important role in nucleation in polluted areas, and 
high sulfuric acid concentrations can explain the initial growth of particles (Yao et al., 2018). However, the 
statistical characteristics and evolution of the PNSD during various types of NPF and thereby their potential 
impacts on air pollution in the YRD region are not yet fully understood.

Based on the continuous 6–800  nm PNSD observations from December 2011 to February 2015 and the 
simultaneous measurements of meteorological conditions, trace gases and aerosol compositions at the Sta-
tion for Observing Regional Process of the Earth System (SORPES) in the YRD region of East China, we 
applied the k-means clustering technique to reduce the complexity of the data set. The purposes of this 
study are to (a) characterize the PNSD in polluted areas of East China, (b) identify the main sources and 
origins of submicron particles, (c) determine the evolution processes of submicron particles in the polluted 
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atmosphere, and (d) investigate the PNSD in severe haze episodes and 
determine the relationships between NPF and air pollution.

2. Materials and Methods
2.1. Measurement Site

Field measurements were conducted at the SORPES station, which 
is located in Nanjing in the YRD region, East China (118°57′10″E, 
32°07′14″N). The SORPES station can be regarded as a suburban site that 
is located 20 km northeast of downtown Nanjing. As shown in Figure 1, 
because of the unique location of the site, the PNSD can be influenced 
by various air masses from different regions (Qi et al., 2015). In the cold 
season, the prevailing winds come from the northeast and bring pollut-
ants that are emitted in the North China Plain to the measurement site. 
In the warm season, the prevailing winds come from the southeast, and 
the air masses from South China contain high values of biogenic volatile 
organic compounds (BVOCs), which cause frequent NPF events. More-
over, the site is located downwind from the cluster of cities in the YRD 
and is thereby able to detect pollutant plumes from the YRD. In addition 
to the impacts of emissions, the changes in meteorological conditions at 
SORPES, such as temperature, radiation and precipitation, can influence 
both the sources and sinks of submicron particles and thereby complicate 
the PNSD. More details about the SORPES station can be found in Ding 
et al. (2016).

2.2. The Instrumentation

The PNSD of submicron particles were measured by a differential mobil-
ity particle sizer (DMPS) that was constructed at the University of Hel-

sinki (Herrmann et al., 2014; Qi et al., 2015). This instrument joined the intercomparison workshop under 
the framework of European Supersites for Atmospheric Aerosol Research and Aerosols, Clouds, and Trace 
gases Research InfraStructure Network, during which the performance of the instrument was well evalu-
ated (Wiedensohler et al., 2012). This instrument is a flow-switching-type of DMPS that can cover a size 
range from 6 to 800 nm with 29 channels by switching the sample and sheath flow rates with a differential 
mobility analyzer (Salma et al., 2011). A commercial condensation particle counter (CPC, TSI model 3772) 
was used to detect size-segregated particles. To obtain a lower cutoff diameter, the condenser temperature 
of CPC was changed from 22°C (the default value) to 10°C, and therefore, the temperature difference be-
tween the saturator and the condenser (ΔT) was more than 25°C. According to the calibration described by 
Wiedensohler et al. (2012), the counting efficiency for 6 nm particles is higher than 75% when ΔT is greater 
than 25°C. The samples were dried by a dryer before entering the DMPS, and two americium 241 sources 
(each of ∼37 kBq) were used to ensure the equilibrium charge. The total particle number concentrations 
were measured directly by the CPC before each 10-min scanning cycle. As shown in Figure S1, for the entire 
data set (e.g., from December 2011 to February 2015), the total number concentrations that were calculated 
from the size distributions (NCDMPS) exhibited good correlations with those that were directly observed by 
the CPC (NCCPC), which demonstrated the high quality of the PNSD data. NCDMPS was slightly lower than 
NCCPC, especially when the number concentrations of the sub-10 nm particles were high (Figure S1), which 
was mainly because the DMPS underestimated the number concentrations of sub-10 nm particles (Wieden-
sohler et al., 2012).

The meteorological conditions (e.g., incoming solar radiation, temperature, relative humidity, wind speed, 
and wind direction); trace gases (e.g., O3, SO2, NO, NO2, and CO); and PM2.5 and aerosol compositions (e.g., 
water-soluble ions) were simultaneously observed at SORPES and helped to analyze the PNSD at SORPES. 
The meteorological conditions were observed by sensors and radiometers (e.g., a weather station and 4 
component net radiometer; Campbell). The trace gas concentrations and PM2.5 mass concentrations were 
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Figure 1. Location of the Station for Observing Regional Process of 
the Earth System with the land cover and prevailing wind information. 
(Red represents the prevailing wind in summer, and blue represents 
the prevailing wind in winter. The indexes in the color bar represent: 1 
Evergreen Needleleaf, 2 Evergreen Broadleaf, 3 Deciduous Needleleaf, 
4 Deciduous Broadleaf, 5 Mixed Forest, 6 Closed Shrublands, 7 Open 
Shrublands, 8 Woody Savannas, 9 Savannas, 10 Grasslands, 11 Permanent 
Wetlands, 12 Croplands, 13 Urban and Built-up, 14 Cropland and Mosaics, 
15 Snow and Ice, 16 Bare Soil and Rocks, 17 Water Bodies, and 18 
Unclassified).
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observed using a series of online analyzers (e.g., 49i, 43i, 42i, 48i and 5030SHARP for O3, SO2, NO + NO2, 
CO and PM2.5, respectively; Thermo Fisher Scientific). The aerosol compositions, for example, water soluble 
ions, were determined by the instrument for Measuring AeRosols and Gases (MARGA; Metrohm). All of 
the data in this study were averaged to 1 h resolution.

2.3. The K-Means Clustering Analysis

Given the large amount of data to be analyzed and the complicated PNSD at SORPES, a clustering tech-
nique, for example, a k-means clustering analysis, was applied to the PNSD data set. K-means clustering is 
an iterative algorithm. The objective of the k-means clustering analysis is to group the objects in the data 
set into a number of k clusters in which each object belongs to the cluster with the nearest mean (Hartigan 
& Wong, 1979). Compared with other statistical methods, such as self-organizing maps, clustering of large 
applications and affinity propagation, the k-means technique performed best when analyzing PNSD data 
(Salimi et al., 2014). The cluster analysis was performed on the hourly averaged PNSD data from December 
2011 to February 2015, with 24,312 h of available data in total.

The number of representative clusters, k value, needs to be determined before running k-means clustering 
analysis. A k value less than 6 is expected to be too small to distinguish the different particle sources and 
transformation processes, while a k value larger than 10 is too complex for scientific discussions (Masiol 
et al., 2017; Wegner et al., 2012). The Dunn index, which is defined as the ratio between the minimal inter-
cluster distance (the distance between objects of different clusters) to maximal intracluster distance (the 
distance between two objects belonging to one cluster), can help to identify dense and well-separated clus-
ters. A higher Dunn index represents the optimum number of clusters. The calculated Dunn index was 
highest at a k value equal to 7 in the range from 6 to 10 (Figure S2). Therefore, seven representative clusters 
were chosen for k-means cluster analysis in this study.

3. Results and Discussions
3.1. The Identification and Interpretation of Each Cluster

Figure 2 shows the PNSD (Figures 2a–2c) and proportion (Figure 2d) of each cluster. The number concentra-
tions in the nucleation mode (6–25 nm), Aitken mode (25–100 nm) and accumulation mode (100–800 nm), 
geometric mean diameters (GMD) and condensation sinks of each cluster are presented in Table 1. Accord-
ing to their temporal occurrences and associations with meteorological parameters and pollutants, each 
cluster type was identified and interpreted. The diurnal and seasonal variations in the temporal occurrences 
of each cluster are shown in Figure 3. Figure 4 presents the meteorological parameters (e.g., temperature, 
relative humidity, incoming solar radiation, and wind speed) and atmospheric pollutants (e.g., PM2.5, O3, 
SO2, CO, NO, and NOx) for each cluster, whereas Table S1 tabulates the mean values. Figure 5 shows the 
air mass backward footprints of each cluster based on the method described in Ding, Wang et al. (2013). 
Figure 6 presents the chemical composition of PM2.5 in each cluster, whereas Table S2 summarizes the cor-
responding average mass concentrations.

3.1.1. Cluster 1: High-Intensity New Particle Formation and Fresh Vehicle Exhaust Emissions

Cluster 1 (C1) accounted for 1.7% of the total measurements. C1 exhibited a bimodal size distribution with 
peaks at ∼20 and 100 nm. The highest number concentration of nucleation mode particles (i.e., 24,200 cm−3) 
and lowest GMD (i.e., 26 nm) were found in C1. The maximum occurrence frequency of C1 was during the 
daytime when the incoming solar radiation was high (Figures 3a and 4c). The PM2.5 mass concentration, 
relative humidity and condensation sink were low for C1 (Figure 4 and Table 1). Strong solar radiation, 
low humidity, and low condensation sink are the main limiting factors for NPF in Nanjing (Herrmann 
et al., 2014; Qi et al., 2015). The O3 concentrations were high, and the SO2 concentrations were sufficient 
at ∼11.2 ppbv on average (Table S1), which favor NPF. Therefore, the high concentration of nucleation 
mode particles and favorable atmospheric conditions indicate that high intensity NPF during the daytime is 
one of the main sources of C1. Similar to NPF (Qi et al., 2015), C1 occurred mostly in spring and autumn, 
which further supports the idea that NPF contributes to C1. For the aerosol chemical compositions, sulfate 
accounted for 48.2% of the total water soluble ions in C1, with an average mass concentration of 11.9 µg/m3, 
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Figure 2. Particle number size distributions of (a) Clusters 1–2, (b) Clusters 3–4 and (c) Clusters 5–7 (solid lines, diamond markers and shaded areas represent 
the median, mean and 25th-75th percentile ranges, respectively), and (d) the frequency of occurrence of each cluster.

C1 C2 C3 C4 C5 C6 C7

Nucleation mode (#/cm3) 24,200 9,900 13,100 4,300 1,800 2,300 2,500

Aitken mode (#/cm3) 13,700 9,100 25,400 14,900 4,100 7,700 11,300

Accumulation mode (#/cm3) 4,600 4,800 4,800 6,100 3,500 6,200 11,300

GMD (nm) 26 38 38 56 69 74 85

CS (10−2 s−1) 3.2 3.2 3.7 4.2 3.2 4.7 7.4

Abbreviations: CS, Condensation Sinks; GMD, Geometric Mean Diameters.

Table 1 
Mean Values of the Number Concentrations of Nucleation, Aitken, Accumulation Mode Particles, GMD and CS in Each 
Cluster
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which was followed by ammonium (21.1%, 5.4 µg/m3) and nitrate (20.6%, 5.1 µg/m3). A high sulfate fraction 
in the water soluble ions indicates the strong photochemical oxidation of C1, which is consistent with the 
high solar radiation, as shown in Figure 4. Strong photochemical oxidation favors NPF as well.

Note that since C1 also occurred at night or late afternoon, fresh vehicle exhaust emissions might influence 
C1. As an indicator of petroleum fuel consumption, the 90th percentile of the NOx concentrations in C1 
was 59.6 ppbv, which was quite high compared with those at rural sites in the YRD, for example, ∼13.4 ppbv 
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Figure 3. (a) Diurnal and (b) seasonal cycles of the occurrences of each cluster.

Figure 4. The (a) temperature, (b) relative humidity, (c) incoming shortwave radiation, (d) wind speed, (e) PM2.5, (f) O3, (g) SO2, (h) CO, (i) NO, and (j) NOx 
concentrations of each cluster. The horizontal lines, boxes and whiskers represent the median, 25–75th percentile and 10–90th percentile, respectively.
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in Linan (Xu et al., 2008). A fresh traffic cluster with a major mode at ∼20 nm was also found by Brines 
et al. (2015) and Agudelo-Castaneda et al. (2019). Rönkkö et al. (2017) found that traffic can even contribute 
to sub-3 nm particles in an urban environment. In this study, the NPF cluster and vehicle exhaust emis-
sions cluster could not be separated even by increasing the representative number of clusters to 20 or by 
performing k-means clustering only for NPF event days (Figure S3), which was different from the studies by 
Agudelo-Castaneda et al. (2019) but was similar to the studies by Brines et al. (2015). The high growth rate 
of newly formed particles at SORPES could be one of the reasons for this, because high growth rates result 
in low amounts of data from the initial stage of NPF, which causes the size distributions of NPF and vehicle 
exhaust emissions to be similar. Moreover, because of the heavy traffic in Nanjing, the influence of vehicle 
emissions is frequent and can even occur simultaneously with NPF.
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Figure 5. Backward airmass footprints of (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, (e) Cluster 5, (f) Cluster 6, and (g) Cluster 7.

Figure 6. The average fractions of water soluble ions for (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, (e) Cluster 5, (f) Cluster 6, and (g) Cluster 7.
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3.1.2. Cluster 2: Weak New Particle Formation and Background Vehicle Exhaust Emissions

Cluster 2 (C2) accounted for 8.2% of all measurements. C2 exhibited a size distribution that was similar 
to that of C1 but with a weaker nucleation mode. The concentration of nucleation mode particles was 
9,900 cm−3, which was lower than that in C1, and the GMD was 38 nm, which was larger than that in C1. 
Similar to C1, the occurrence frequency of C2 exhibited a maximum during the daytime but was much high-
er than that of C1 during 6:00-24:00. The incoming solar radiation in C2 (386.1 W/m2 on average, Table S1) 
was lower than that in C1. C2 had favorable atmospheric conditions for NPF, including relatively low values 
of PM2.5 concentration (61.2 µg/m3 on average) and CS (3.2 × 10−2 s−1) and a sufficiently high SO2 concentra-
tion (10.6 ppbv). The sulfate fraction in C2 (i.e., 44.0%) was lower than that in C1, which suggested weaker 
photochemical oxidation. Similar to C1, the 90th percentile of the NOx concentrations in C2 was high and 
indicated the role of vehicle exhaust emissions. Since C2 exhibited more stable occurrences for diurnal and 
seasonal cycles, C2 represented the weak NPF and background vehicle exhaust emissions.

Both C1 and C2 represented the PNSD during NPF events, but the intensities of the NPF events were differ-
ent. Figure S4 presents the J6 (the formation rate of 6 nm particles) and GR6–30 nm (the growth rate from 6 to 
30 nm) of NPF events in C1 and C2. C1 had a higher formation rate and growth rate than C2 (the median 
J6 and GR6–30 nm values for C1 were 4.0 cm−3s−1 and 9.0 nm/h, respectively, when compared with the corre-
sponding values of 1.5 cm−3s−1 and 8.0 nm/h for C2). The ranges of J6 and GR6–30 nm of C1 and C2 also over-
lapped with each other, which means that the NPF intensity at SORPES varied from low to high values in a 
continuous manner. As shown in Figures S5a and S5b, the formation rate mainly affected the PNSD below 
10 nm, while the growth rate affected the peak at ∼20 nm. When manually selecting the non-NPF period 
data (Figure S5c), the PNSD of C1 and C2 had lower values below 10 nm but a higher peak at ∼20 nm. The 
intensity of vehicle emissions, which was indicated by the NOx concentrations, mainly affected the peak at 
∼20 nm. Moreover, the PNSD of both C1 and C2 exhibited a second peak at ∼100 nm, which represented 
urban background aerosols. Elevated particle number concentrations at ∼100 nm were frequently observed 
not only at SORPES but also in other urban environments in China (Wu, et al., 2008; Xiao et al., 2015; Yue 
et al., 2013).

3.1.3. Cluster 3: Intensive Growth of Nucleated Particles

Cluster 3 (C3) accounted for 1.4% of the total measurements. The PNSD of C3 was unimodal with a peak 
in Aitken mode. The GMD of C3 was 38 nm, which was similar to C2. The Aitken mode particle number 
concentration of ∼25,400 cm−3 in C3 was the highest among the seven clusters. Aitken mode particles fall in 
a size range that overlaps the nucleation and accumulation modes and could therefore originate from either 
primary emissions or from the growth of nucleation mode particles. The diurnal variations in the C3 occur-
rences exhibited maxima during the daytime but were slightly later than the maximum occurrence times 
of C1 (Figure 3). Therefore, it is likely that C3 results from the growth of nucleated C1 particles. C3 had 
atmospheric conditions similar to those of C1, although the temperatures and ozone concentrations were 
higher and the pollutant concentrations, such as PM2.5, NO and NOx, were lower. C3 had the lowest occur-
rence since it represented the initial growth stage of high-intensity NPF and occurred mostly after C1 with 
relatively short durations. C3 occurred mostly in the warm season, especially in spring and summer. The 
sulfate proportion for C3 reached 53.1% of the total water soluble ions, which was the highest percentage 
among the seven clusters. The combination of high solar radiation and O3 concentrations leads to enhanced 
sulfate formation. As shown in Figure 5, unlike the other clusters, C3 can be influenced by air masses from 
South China, where BVOC emissions are high in the warm season. The oxidation of BVOCs can form highly 
oxidized multifunctional organic compounds with extremely low vapor pressures, which then contribute to 
the growth of newly formed particles (Ehn et al., 2014; Stolzenburg et al., 2018).

3.1.4. Cluster 4: Further Growth and Aged Vehicle Exhaust

Cluster 4 (C4) accounted for 9.1% of the total measurements. The PNSD of C4 exhibited a peak at 60 nm. 
The GMD of C4 was 56 nm, which was clearly larger than those of C1–C3. The occurrence frequencies of 
C4 peaked in the late afternoon, which was later than those of C1–C3. Therefore, C4 represents the further 
growth of nucleation mode particles. C4 had atmospheric conditions similar to those of C1–C3 but with 
relatively lower incoming solar radiation intensities (Figure 4). C4 was universally observed throughout 
the year, but with low frequencies in late January, February, and June (Figure 3). Moreover, the CO, NO, 
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and NOx concentrations of C4 were higher than those of C1–C3, which indicated that aged vehicle exhaust 
emissions may also influence the PNSD of C4. For the aerosol compositions of C4 (Figure 6 and Table S2), 
sulfate (46.1%, 14.0 µg/m3) dominated the water-soluble ions in PM2.5, which was similar to C1–C3. The wa-
ter soluble ion mass concentrations of C4 were higher than those of C1–C3, which suggested the formation 
of secondary inorganic aerosols during aging.

Taken together, C1–C4 occurred mostly in the daytime and thus had higher temperatures and radiation in-
tensities compared with the other clusters. Trace gases such as O3 also followed the diurnal variations, with 
higher concentrations during the daytime. To exclude the effect of diurnal variations, an interval during the 
daytime period of 9:00-15:00 L.T. was selected to compare the atmospheric conditions of each cluster (Fig-
ure S6). The results were generally similar and indicated that diurnal variations were not the only reason for 
the different atmospheric conditions of each cluster.

3.1.5. Cluster 5: Humid YRD Urban Background Cluster

Cluster 5 (C5) was the most frequent cluster at SORPES and accounted for 37.9% of the total measurements. 
C5 exhibited a unimodal size distribution with a mode centered at 100 nm. The particle number concentra-
tion of C5 was the lowest among all of these clusters (e.g., 1,800 cm−3, 4,100 cm−3, and 3,500 cm−3 in the nu-
cleation, Aitken and accumulation modes, respectively), which indicated that C5 represented a background 
urban aerosol size distribution in the YRD region. C5 was associated with high relative humidity (75.6%), 
which means that C5 occurred during cloudy or rainy days, when the wet removal efficiency was remarka-
ble. According to Figure 5, the air masses mostly came from marine areas, which carried clean and wet air 
to the SORPES station. The concentrations of trace gas pollutants such as SO2, CO, NO, and NOx were lower 
in C5 and reflected the background conditions in the YRD region. However, as shown in Figure 4d and 
Table S2, the median and average PM2.5 concentrations of C5 were not the lowest among the seven clusters. 
Although C5 had a PM2.5 mass concentration similar to that of C4, the water soluble ion concentration of C5 
was much higher, which suggested different sources and transformation processes of the particles in C5. As 
the highest relative humidity was in C5, heterogeneous reactions might play an important role in secondary 
inorganic aerosol formation (Ravishankara, 1997).

3.1.6. Cluster 6: Pollution From Fossil Fuel Combustion

Cluster 6 (C6) was the second most frequent cluster, which accounted for 34.1% of the total measurements. 
Similar to C5, the size distribution of C6 was unimodal with a peak at 100  nm. However, the number 
concentrations of all modes (e.g., 2,300 cm−3, 7,700 cm−3 and 6,200 cm−3 in the nucleation, Aitken and 
accumulation modes, respectively) in C6 were higher than those in C5, which indicated that C6 was a 
more polluted cluster than C5. C6 occurred mostly at night during the presence of a shallower nocturnal 
boundary layer, and therefore, the pollutant levels were enriched. As a result, C6 was associated with high 
PM2.5 levels and high concentrations of the gas pollutants such as NO, NOx, and CO. The average PM2.5 mass 
concentration was 82.4 µg/m3, which was higher than the National Ambient Air Quality Standards in China 
(e.g., 75 µg/m3 in annual average). According to the footprint shown in Figure 5, the pollutants mostly came 
from the YRD area, and fossil fuel combustion could be the main source. During the spring festival in early 
February, the lowest C6 occurrence was observed because of the closing of factories and decreased traffic, 
which further supported the view that anthropogenic activities were causing pollution. The nitrate propor-
tion (e.g., 32.1%) was the highest among this cluster, with an average mass concentration of 19.4 µg/m3. The 
daytime gas-phase oxidation of NO2 by OH radicals under relatively low temperatures and nighttime N2O5 
hydrolysis (Sun et al., 2018) could be reasons for the high nitrate proportion in this cluster.

3.1.7. Cluster 7: Heavy Pollution From Biomass Burning and Fossil Fuel Combustion

Cluster 7 (C7) accounted for 7.5% of the total measurements. C7 exhibited a unimodal size distribution 
and the highest number concentration of particles in the accumulation mode, which reached 11,300 cm−3. 
The GMD of C7 was the largest among the seven clusters (e.g., 85 nm). This cluster was characterized by 
the lowest incoming solar radiation intensity and O3 concentration, as well as the highest PM2.5 concentra-
tions (111.6 µg/m3 on average), SO2 (16.7 ppbv on average), CO (1.0 ppmv on average), NO (22.3 ppbv on 
average) and NOx (53.5 ppbv on average). The high SO2, CO and NOx concentrations suggest that C7 was 
influenced by fossil fuel combustion, such as coal and petroleum fuel combustion. The average nitrate, sul-
fate and ammonium mass concentrations were 20.4 µg/m3, 20.6 µg/m3, and 13.6 µg/m3, respectively, which 
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were the highest among the seven clusters. The mass concentration of water soluble ions was comparable 
with those measured in other cities of China during haze pollution periods (An et al., 2019; Wang, Huang 
et al., 2017; Zhang et al., 2019). Similar to C6, C7 occurred mostly during nighttime. The wind speeds for 
C7 were the lowest among the seven clusters, which suppressed the diffusion of pollutants. Therefore, the 
heavy pollution of C7 may be related to fossil fuel combustion and accumulation under relatively stable 
atmospheric conditions. Moreover, this pollution could also be attributed to pollutant transport, such as 
from biomass burning. As shown in Figure 6 and Table S2, the mass concentration of potassium ions (K+) 
in C7 was 2.7 μg/m3, and its fraction reached 4.2%, which was much higher than those in the other clusters 
and indicated the influence of biomass burning (Ding, Fu, Yang, Sun, Petäjä et al., 2013; Nie et al., 2015). 
As shown in Figure 3b, C7 occurred most frequently during the harvest period from late May to early June, 
which further supported the idea that biomass burning was one of the main reasons for the severe pollu-
tion in C7. The biomass burning plumes were transported to Nanjing from Anhui Province (to the west of 
Nanjing) as well as from the YRD area (Figure 5). The heavily polluted biomass burning plumes increased 
atmospheric stability and thereby enhanced local pollutant accumulation in Nanjing (Ding, Fu, Yang, Sun, 
Petäjä et al., 2013; Huang et al., 2018).

3.2. The Associations of Each Cluster

The cluster proximity diagram, which was obtained using the silhouette width (Beddows et al., 2009), is 
shown in Figure 7a. This diagram positions each cluster according to its similarity with the other clusters. 
Closer clusters represent those with the most similar characteristics, whereas more distant clusters rep-
resent those with more dissimilar characteristics. The average particle diameter of each cluster increases 
from left to right. The nucleation-related clusters, for example, C1 and C2, are positioned on the left side 
of the diagram. C3 and C4 are located next to the C1 and C2 clusters and connect the nucleation-related 
clusters (e.g., C1 and C2) with the urban pollution-related clusters (e.g., C6 and C7). Although the urban 
pollution-related clusters (e.g., C6 and C7) are positioned far from the nucleation-related clusters (e.g., C1 
and C2), the contribution of nucleation to urban pollution is clear through the growth clusters (e.g., C3 and 
C4) as intermediate steps. C5, which represents the YRD urban background cluster, connects the nuclea-
tion-related cluster (C2) with the urban pollution-related cluster (C6).

To further study how each cluster evolves with time, the frequency of each cluster occurring after a certain 
cluster is presented in Figure 7b. The event occurrence frequency of each cluster is tabulated in Table S3, 
and the frequencies of certain clusters that are converted from another cluster are shown in Figure S7. Note 
that due to the very different event occurrence frequencies of each cluster (Table S3), the main pathways 
that describe the fates of the clusters (Figure 7) are somewhat different from the main pathways that de-
scribe their origins (Figure S7). C1 had 228 events in total (Table S3) and was mostly from C2, the weak NPF 
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Figure 7. (a) Cluster proximity diagram and (b) “converted-to” flow chart. Note: the red arrows represent the increase in particle diameter. The frequencies and 
numbers of conversion are marked with arrows. Only frequencies larger than 20% are presented in Figure 7b.
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cluster (Figure S7). As shown in Figure 7b, C1 could convert to C2 with a frequency of 50%, which indicated 
weakening of the nucleation. Moreover, C1 could convert to C3 with a frequency of 38%, and C3 could then 
convert continuously to C4 with a frequency of 72%. This conversion chain shows the typical process of 
NPF and growth with a “banana” shape (Figure S8a). C2 had 910 events (Table S3), and most of C2 came 
from C5 and C6 (Figure S7). Similar to the conversion of C1 to C4, 23% of C2 could convert to C4, which 
indicated the growth of nucleation mode particles (Figure S8b). During the measurements, there were 45 
C1-C3-C4 NPF events and 70 C2-C4 NPF events in total. The C1-C3-C4 NPF events had higher formation 
and growth rates than the C2-C4 NPF events. The averaged J6 and GR6–30 nm values of the C1-C3-C4 NPF 
events were 3.8 s−1 cm−3 and 11.0 nm/h, respectively, compared with 2.8 s−1 cm−3 and 8.6 nm/h, respectively, 
for the C2-C4 NPF events.

After the nucleation-related clusters (C1, C2) convert to C4, 79% of C4 will convert to C6 (i.e., 56%) and C7 
(i.e., 23%), which were the two clusters associated with haze in urban areas. As pollution-related clusters, 
C6 and C7 had 2,114 and 581 events, respectively. 23% of C6 and 34% of C7 came from C4 (Figure S7). The 
strong relationships among NPF events and pollution episodes indicated that NPF and growth could some-
how contribute to pollution in urban environments. Figure S9 presents a typical case for the conversions 
from nucleation-related clusters to pollution-related clusters. Through a case study, Guo et al. (2014) also 
found that nucleation precedes pollution episodes in Beijing. Kulmala et al. (2021) reported that nearly all 
of the observed haze episodes originated from NPF in Beijing and found that the reduced growth rates could 
delay the buildup of haze episodes. The newly formed particles, which had different chemical compositions 
from those of accumulation mode particles, might facilitate heterogeneous reactions by providing distinct 
aerosol surfaces and volumes and thereby produce secondary particle masses (Kulmala et al., 2021). Despite 
the clear evidence, the physical and chemical mechanisms of for nucleation contributing to pollution in 
urban environments are still unclear.

The humid urban background cluster and two pollution clusters, for example, C5, C6 and C7, are closely 
related to each other. C5–C7 represent three levels of urban pollution, and therefore, the conversions be-
tween them are related to the changes in the PNSD of submicron particles. C5 had 1,246 events (Table S3), 
and most of C5 were from C6 (Figure S7). The conversion from C5 to C6 occurred at a frequency of 73% and 
represented the accumulation of pollutants, while the conversion of C6 to C5 occurred at a frequency of 49% 
and represented the gradual dissipation of pollution. C7, the heaviest pollution cluster, can convert to C6 
with a frequency of 72% and involves the processes of atmospheric cleansing. Wet/dry deposition, evolution 
of the planetary boundary layer, and passing through a cold front can be causes of atmospheric cleansing.

3.3. Severe Haze Episodes in Cluster 6 and Cluster 7

C6 and C7 are two urban pollution-related clusters with high PM2.5 concentrations but with different PNSD. 
This section focuses on the extremely severe haze episodes in C6 and C7 to investigate how the PNSD varies 
during air pollution in the urban YRD region. As shown in Figure 8, two typical episodes in C6 and C7, 
for example, Episode 1 from December 3 to 9, 2013, and Episode 2 from June 1 to 5, 2012, were selected 
for detailed case studies. Episode 1 was observed in the cold season, during which severe smog occurred 
frequently in East China (Ding, Fu, Yang, Sun, Zheng et al., 2013). The average PM2.5 concentration during 
Episode 1 was 258 µg/m3, and the maximum was 488 µg/m3. As shown in Figure S10, the average nitrate, 
sulfate and ammonium concentrations during Episode 1 were 66.3  µg/m3, 44.1  µg/m3, and 37.5  µg/m3, 
respectively, compared with the corresponding annual average values of ∼15.8  µg/m3, 16.8  µg/m3, and 
11.0 µg/m3, respectively. The average and maximum CO concentrations reached 1.8 ppmv and 3.0 ppmv, 
respectively, which were much higher than the annual average value of ∼0.7 ppmv. Therefore, fossil fuel 
combustion coupled with steady atmospheric stability and low boundary layer heights were presumably 
the main reasons for this regional-scale smog. Episode 2 occurred in early June during the harvest season 
in East China. Extremely high PM2.5 concentrations were observed at night when the planetary boundary 
layer height was low (Figure S11). The average PM2.5 concentration during Episode 2 was 117 µg/m3, and 
the maximum PM2.5 concentration was 364 µg/m3. The average and maximum potassium ion (K+) con-
centrations reached 5.3 µg/m3 and 21.7 µg/m3, respectively, which indicated that the severe pollution was 
mainly caused by straw burning.
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Although both Episode 1 and Episode 2 represented extremely high 
PM2.5 episodes, the PNSD was significantly different between these two 
episodes. As shown in Figure 8, most of the PNSD during Episode 1 be-
longed to C6, while the PNSD during Episode 2 belonged to C7 when 
the PM2.5 concentrations were high. Different pollutant sources can 
cause completely different PNSD. Although the average PM2.5 concentra-
tion during biomass burning pollution, such as for Episode 2, was low-
er than that during fossil fuel pollution, such as for Episode 1 (117 µg/
m3 vs. 258  µg/m3), the number concentrations in the biomass burning 
plumes were much higher than those in the fossil fuel combustion 
plumes (26,000 cm−3 vs. 18,300 cm−3). Figure 9 shows the relationships 
among the PM2.5 mass concentrations and accumulation mode particle 
number concentrations for the urban background cluster (C5) and two 
pollution-related clusters (C6, C7). The accumulation mode particle 
number concentrations had a positive relationship with the PM2.5 mass 
concentrations. C5-C7 exhibited relatively similar ranges of PM2.5 mass 
concentrations, although the median PM2.5 concentrations were different 
(Figure 4e). C7 clearly had a higher number concentration of accumu-
lation mode particles than C6, whereas C5 had the lowest accumulation 
mode particle number concentration. Although the PM2.5 mass concen-
trations were somewhat similar in C5, C6 and C7, the particle number 
concentrations of the accumulation mode particles could vary by more 
than one order of magnitude among these clusters. This was mainly be-
cause the PM2.5 mass concentrations were dominated by supermicron 
particles (i.e., particles with sizes larger than 1 µm) whose contribution 
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Figure 8. Variations in particle number size distributions, geometric mean diameters and PM2.5 concentrations during severe haze pollution episodes in (a) 
Cluster 6 and (b) Cluster 7 and (c) the size distributions of fossil fuel episodes, biomass burning episodes, Cluster 6 and Cluster 7 (solid lines, diamond markers 
and shaded areas represent the median, mean and 25th-75th percentile ranges, respectively). Additional parameters, such as meteorological conditions, trace 
gases, and water soluble ions, during the episodes are presented in Figures S10 and S11.

Figure 9. Scatter plot of PM2.5 mass concentrations versus number 
concentrations of accumulation mode particles in Clusters 5–7.
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to the particle number concentrations was negligible. However, since the number concentrations and parti-
cle sizes are directly related to the human health and climate effects of aerosols, in addition to the PM mass 
concentration, the PNSD is important for understanding the air quality in urban environments.

4. Conclusions
More than 3 years of continuous measurements of submicron PNSD (6–800 nm) were conducted at the 
SORPES station in the YRD region of East China. To understand the sources and transformations of sub-
micron particles, a k-means clustering technique was applied, and seven clusters were categorized from 
the PNSD data set. The temporal occurrences of the PNSD, meteorological parameters and concentrations 
of pollutant gases, PM2.5 and particle chemical composition were used to define and interpret each cluster.

C1 and C2, which accounting for 9.9% of the total PNSD data, were related to NPF and vehicle exhaust emis-
sions, but they represented different intensities of these two sources. The submicron particles from NPF and 
vehicle exhaust emissions could not be separated because of the high particle growth rates and heavy traffic 
in the YRD. C3 and C4, which accounted for 10.5% of the total PNSD data, represented the growth of newly 
formed particles. C5, which accounted for 37.9% of the total PNSD data, was attributed to humid urban 
background conditions. C6 and C7, which accounted for 41.6% of the total PNSD data, were attributed to 
urban haze pollution. The cluster proximity diagram and conversion flow chart show the close relationships 
among the different clusters. The nucleation clusters (C1, C2) can influence the haze pollution clusters (C6, 
C7) through the growth clusters (C3, C4). The urban background cluster (C5) and haze pollution clusters 
(C6, C7) frequently convert to each other. According to the case studies of the selected severe haze episodes 
in C6 and C7, although the PM2.5 mass concentrations during biomass burning pollution were lower than 
those during periods with haze from fossil fuel combustion, the particle number concentrations, especially 
the accumulation mode particle number concentrations, were much higher. A further analysis showed that 
although the PM2.5 mass concentrations were somewhat similar, the particle number concentrations of the 
accumulation mode particles could vary by more than one order of magnitude from the urban background 
cluster (C5) to the pollution-related clusters (C6, C7).

In general, this study applied the cluster analysis technique to analyze a long-term PNSD data set from 
the YRD for the first time. The k-means cluster technique has been proven to be an effective tool to cate-
gorize PNSD datasets and can thereby elucidate the sources and transformations of atmospheric aerosols. 
Considering the increasing public concern regarding air quality, we highlight the importance of the PNSD 
to understand the air quality in urban environments and recommend clustering techniques for analyzing 
complex PNSD datasets.

Data Availability Statement
The land cover data in Figure 1 are from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Cover Type (MCD12Q1) Version 6 data product, which is available at https://doi.org/10.5067/MODIS/
MCD12Q1.006. The SORPES measurement data used in this study are available at https://doi.org/10.5281/
zenodo.4060571.
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