1,009 research outputs found
Mechanism for Spontaneous Growth of Nanopillar Arrays in Ultrathin Films Subject to a Thermal Gradient
Several groups have reported spontaneous formation of periodic pillar-like
arrays in molten polymer nanofilms confined within closely spaced substrates
maintained at different temperatures. These formations have been attributed to
a radiation pressure instability caused by acoustic phonons. In this work, we
demonstrate how variations in the thermocapillary stress along the nanofilm
interface can produce significant periodic protrusions in any viscous film no
matter how small the initial transverse thermal gradient. The linear stability
analysis of the interface evolution equation explores an extreme limit of
B\'{e}nard-Marangoni flow peculiar to films of nanoscale dimensions in which
hydrostatic forces are altogether absent and deformation amplitudes are small
in comparison to the pillar spacing. Finite element simulations of the full
nonlinear equation are also used to examine the array pitch and growth rates
beyond the linear regime. Inspection of the Lyapunov free energy as a function
of time confirms that in contrast to typical cellular instabilities in
macroscopically thick films, pillar-like elongations are energetically
preferred in nanofilms. Provided there occurs no dewetting during film
deformation, it is shown that fluid elongations continue to grow until contact
with the cooler substrate is achieved. Identification of the mechanism
responsible for this phenomenon may facilitate fabrication of extended arrays
for nanoscale optical, photonic and biological applications.Comment: 20 pages, 9 figure
Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses
Experiments by several groups during the past decade have shown that a molten
polymer nanofilm subject to a large transverse thermal gradient undergoes
spontaneous formation of periodic nanopillar arrays. The prevailing explanation
is that coherent reflections of acoustic phonons within the film cause a
periodic modulation of the radiation pressure which enhances pillar growth. By
exploring a deformational instability of particular relevance to nanofilms, we
demonstrate that thermocapillary forces play a crucial role in the formation
process. Analytic and numerical predictions show good agreement with the pillar
spacings obtained in experiment. Simulations of the interface equation further
determine the rate of pillar growth of importance to technological
applications.Comment: 5 pages, 4 figure
High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.
Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates
Integration of a microprobe into a CMM
Various microprobes have been developed in the last decade to address the
needs of micrometrology. However, most microprobes are only employed in specialized
measuring machines located in a few research institutes and are not widespread in the
industry. This work aims to extend the capabilities of conventional coordinate
measuring machines (CMMs) towards measuring microgeometries through the low-cost
integration of a tactile microprobe. In order to demonstrate this, a gear measuring
instrument (GMI), which is a commercial CMM not specialized for measurements at the
microscale, has been equipped with a recently developed silicon-membrane-based
microprobe. In the first part of this work, the working principle of the microprobe, its
assembly and its integration into the GMI are described. Two different mounting setups
of the microprobe onto the GMI were evaluated and tested. Measurements on the GMI
were performed solely with the microprobe or by combining the microprobe and the
measurement system already present on the GMI. This combination makes it possible to
use the microprobe advantageously and to exchange it in a comfortable semi-automatic
way. To test these two mounting setups, a new involute scanning artifact (SAFT) with
superimposed waviness was measured
Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy - an experimental approach
Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth\u27s climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca-Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca-Mg carbonates at high temperatures (150 to 220 ∘C) and measured the Li isotope composition (δ7Li) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained ..
Distribución de las tensiones en el sistema pared-mortero-bizcocho-esmalte
No availableCuando en los azulejos (placas de revestimiento) aparecen tensiones después de su colocación, la consecuencia inmediata son dos inconvenientes desagradables: 1) el eventual despegue del azulejo después de un perÃodo de tiempo más o menos corto, por desplazamiento de una pieza sencilla o de las filas enteras; 2) la sucesiva aparición de fisuras capilares en el esmalte
The Alternative for Germany’s radicalization in historical-comparative perspective
This article chronicles the AfD’s rightward repositioning and compares it with the programmatic development of three postwar German parties on the ideological wings. By highlighting factors that tilt the balance of power away from moderate reformers towards hardliners, this comparative analysis sheds light on the conditions that lead a relatively successful party on the ideological wings, such as the AfD, to radicalize its programme. Four variables stand out: whether party hardliners take the blame for the recent election loss; whether they offer a convincing programmatic and strategic alternative to the reformers; whether changes in party composition strengthen hardliners; and whether external factors enhance their weight within the party. The essay concludes that the AfD’s radicalization was unusual, but not exceptional. It is however too early to conclude that the Federal Republic’s distinctive institutions and political culture no longer impose significant costs on parties that shift their programmes away from the centre
Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength
In order to apply Sr/Ca and 44Ca/40Ca fractionation during calcium carbonate (CaCO3) formation as a proxy to reconstruct paleo-environments, it is essential to evaluate the impact of various environmental factors. In this study, a CO2 diffusion technique was used to crystallize inorganic calcite from aqueous solutions at different ionic strength/salinity by the addition of NaCl at 25 °C. Results show that the discrimination of Sr2+ versus Ca2+ during calcite formation is mainly controlled by precipitation rate (R in μmol/m2/h) and is weakly influenced by ionic strength/salinity. In analogy to Sr incorporation, 44Ca/40Ca fractionation during precipitation of calcite is weakly influenced by ionic strength/salinity too. At 25 °C the calcium isotope fractionation between calcite and aqueous calcium ions (Δ44/40Cacalcite-aq = δ44/40Cacalcite − δ44/40Caaq) correlates inversely to log R values for all experiments. In addition, an inverse relationship between Δ44/40Cacalcite-aq and log DSr, which is independent of temperature, precipitation rate, and aqueous (Sr/Ca)aq ratio, is not affected by ionic strength/salinity either. Considering the log DSr and Δ44/40Cacalcite-aq relationship, Sr/Ca and δ44/40Cacalcite values of precipitated calcite can be used as an excellent multi-proxy approach to reconstruct environmental conditions (e.g., temperature, precipitation rate) of calcite growth and diagenetic alteration
- …