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Several experimental groups have reported spontaneous formation of periodic pillar arrays in molten
polymer nanofilms confined within closely spaced substrates held at different temperatures. These
formations have been attributed to a radiation pressure instability caused by interface reflection of
acoustic phonons. We demonstrate here how variations in thermocapillary stress at the air/polymer
interface can produce significant periodic protrusions in any viscous film no matter how small the
transverse thermal gradient. The linear stability analysis of the interface evolution equation
corresponds to an extreme limit of Bénard–Marangoni flow peculiar to films of nanoscale
dimensions—deformation amplitudes are small in comparison to the pillar spacing and hydrostatic
forces are negligible. Finite element simulations of the full nonlinear equation provide estimates of
the array pitch and growth rates beyond the linear regime. Results of the Lyapunov free energy as
a function of time also confirm that pillarlike elongations are energetically preferred in nanofilms,
in contrast to cellular instabilities in macroscopically thick films. If not mass limited, fluid
elongations continue to grow until contact with the cooler substrate is achieved. These predictions
should facilitate the fabrication of extended arrays for nanoscale optical, photonic, and biological
applications. © 2010 American Institute of Physics. �doi:10.1063/1.3475516�

I. INTRODUCTION

The manufacture of ultrasmall optical and electronic
components is nowadays based on optical lithography tech-
niques whereby a geometric pattern defined by a photomask
is transferred onto a photosensitive resist layer by exposure
to UV light. Various chemical treatments are then used to
embed the positive or negative image of this pattern onto a
material film beneath the photoresist. While this commercial
technique can generate feature sizes below 100 nm, there are
certain disadvantages inherent in the patterning process.1 For
example, multiple step-and-repeat processes are required for
deposition, exposure, and removal of the resist layers for
constructing three–dimensional �3D� components. Inhomo-
geneities in the resist layer thickness, composition, exposure
dose, or developer concentration can cause significant sur-
face roughness and scattering losses which diminish perfor-
mance of optical or electronic components. Optical lithogra-
phy is also inherently a two-dimensional �2D� technique
whereby 3D components are fabricated layer upon layer. The
process requires that the supporting substrates be rigid and
flat, posing challenges for the fabrication of curved or com-
plex shaped components. In an effort to eliminate such con-
straints while reducing fabrication time and cost, researchers
have been exploring alternative, lower resolution patterning
techniques such as ink-jetting,2 gravure printing,3

direct-write,4 micromoulding,5 and nanoimprinting.6–8 These
methods are more adaptable to new materials and pattern
layouts; however, multiple etching steps are still required and
device performance is still not comparable to those fabri-
cated by conventional means. The materials of choice tend to

be inks, colloidal suspensions, and polymer melts,9 which are
not only less costly but whose composition can be tuned to
optimize functionality.

Some groups have been investigating less conventional
means of film patterning by exploiting the self-assembling
character of structures formed by hydrodynamic instabilities
in thin films. Examples include dewetting induced by chemi-
cally templated substrates,10 capillary breakup on rippled
substrates,11 island formation in ferroelectric oxide films,12

elastic contact instabilities in hydrogels,13 and evaporative
instabilities in metal precursor suspensions.14 The use of
fluid instabilities for controlled formation of large area, peri-
odic arrays offers an interesting approach for future develop-
ment of noncontact, resistless lithography.

Liquid films with dimensions in the micron to nanometer
range are subject to exceedingly large surface to volume ra-
tios and are especially prone to interfacial instabilities. This
sensitivity to surface forces has been effectively used to con-
trol the motion of small liquid volumes for microfluidic,
biofluidic, and optofluidic applications.15 For example, tan-
gential stresses based on thermocapillary �TC� forces have
been used to steer,16–18 mix,19 and shape20 thin films and
droplets on demand. Since the surface tension of common
liquids increases with decreasing temperature, thermal gradi-
ents applied to a film generates surface forces which drive
the flow of liquid toward cooler regions. In this work, we
examine the stability of liquid nanofilms subject to a trans-
verse temperature gradient. Results show strong susceptibil-
ity to formation of nanopillar arrays which elongate toward
the cooler substrate. The spontaneous formation of 3D arrays
offers exciting possibilities for noncontact, one step fabrica-a�Electronic mail: stroian@caltech.edu.
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tion of optical and photonic structures. Since removal of the
thermal gradient leads to rapid solidification of the molten
structures in situ, nanostructures formed in this way also
manifest specularly smooth interfaces, a distinct advantage
for optical applications.

A. Formation of pillar arrays in molten polymer
nanofilms

The typical experimental setup leading to spontaneous
formation of nanopillar arrays is shown in Fig. 1�a�. Poly-
mers such as polystyrene �PS� or poly�methylmethacrylate�
�PMMA� are first spun cast onto a clean, flat silicon wafer to
an initial thickness ho of the order of a few hundred nanom-
eters. The coated wafer is then overlay with a second silicon
wafer containing vertical spacers along the periphery to en-
sure an air gap above the polymer film. The wafer separation
distance, do, is normally several hundred nanometers. The
bottom and top wafers are maintained at different tempera-
tures above the polymer glass transition temperature to en-
sure a flowing liquid film. In all the experiments reported in
the literature, �T=T2−T1�10–50 °C. Next, we review the
experimental results of three independent groups reporting
observations and measurements of nanopillars arrays.

1. Experiments by Chou et al.

Chou et al.21,22 appear to have been the first group to
report nanopillar formation in ultrathin polymer films. In
their experiments, they studied low molecular weight
PMMA �approximately 2K�, which was first spun cast to a
film thickness of 100 nm onto a cleaned silicon wafer and
then annealed at 80 °C to drive off residual solvent. The
annealed film was then placed within the assembly shown in
Fig. 1�a�, where the top wafer had been treated with a non-
stick coating to prevent polymer attachment after solidifica-
tion. The underside of the top wafer was either flat or pat-
terned with a rectangular relief structure a few tens of
microns in width and about 0.3 �m tall. In all experiments

reported, there was no imposed temperature difference be-
tween the top and bottom wafers �T2−T1=0�. Instead, the
entire assembly was cyclically heated from room tempera-
ture to either 130 or 170 °C, well above the polymer glass
transition temperature Tg=103 °C �Ref. 23� to ensure a soft-
ened film. The heating cycle persisted for 5–80 min with no
noticeable difference in pattern formation if the air gap was
replaced by a vacuum at 0.3 Torr. In cases where the PMMA
coated wafer was not overlay by a top wafer and simply
exposed to open air, no protrusions were observed to form.
When the top wafer was placed in close proximity to the
melt surface, i.e., �do−ho��165 nm, nanopillar arrays with
in-plane hexagonal symmetry were obtained, as in the image
shown in Fig. 1�b�. These elongations were measured to have
a diameter and pitch �i.e., pillar spacing� of a few microns;
their overall height closely matched the gap distance do sepa-
rating the two wafers. AFM images of the resulting struc-
tures after solidification revealed pillars with a flat top and
fairly straight sidewalls. Chou et al. attributed the formation
of these elongations to an image-charge induced electrohy-
drodynamic instability caused by nonuniform distribution of
charges on the relief surface. Chou et al.22 also noted that
thermal gradients might be playing a role but that Rayleigh–
Bénard �RB� or Bénard–Marangoni �BM� cellular convec-
tion was unlikely since the initial film thicknesses were far
too small to overcome the relevant critical numbers required
for instability.

2. Experiments and modeling efforts
by Schäffer et al.

Soon thereafter, Schäffer and co-workers24–26 used a
similar setup as in Fig. 1�a� where the two confining wafers
were purposely set to different temperatures such that T2

�T1. They first spun cast high molecular weight films of PS
�Tg=95 °C,23 molecular weight 108 kg/mol� dissolved in
toluene onto a silicon wafer down to an initial thickness
80 nm�ho�130 nm. It appears that these films were not
annealed to drive out residual solvent after spin casting,
which may have led to overestimates in the reported values
of ho �discussed further in Sec. III�. The wafer separation
distance ranged from 100 nm�do�600 nm. The bottom
wafer was then heated to T2=170 °C; the top wafer was
cooled to a temperature above Tg such that �T=T2−T1

ranged from 10��T�55 °C. The small wafer separation
distances give rise to very large transverse thermal gradients
of the order of �T /do�106–108 °C /cm. After subjecting
the PS film to the thermal gradient overnight, the sample was
quenched to room temperature and the top wafer removed.
As in Chou et al., the top wafer had been treated with a
silanizing monolayer to prevent polymer adhesion. After so-
lidification, the top wafer was removed to reveal periodic
nanopillar arrays as shown in Fig. 1�c�. To study the influ-
ence of the wafer separation distance do on the pillar forma-
tion process, Schäffer et al. used a tilted plate geometry in
which the top wafer was inclined with respect to the bottom
by about 1 �m over a distance of 1 cm, corresponding to an
inclination angle of about 0.0057°. This modification al-
lowed simultaneous measurement of the array pitch as a
function of do within a single run. Schäffer et al. conducted a
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FIG. 1. �Color online� �a� Sketch of experimental setup for formation of
nanopillar arrays. Initial thickness of flat nanofilm is denoted by ho; gap
spacing in between silicon substrates is denoted by do. Length scale �max

represents theoretical prediction for pillar spacing; �expt represents experi-
mentally measured values. �b� Atomic force microscopy image of PMMA
pillars�Ref. 21�: ho=95 nm, do=260 nm, �T unknown, �expt=3.4 �m. �c�
Optical micrograph of PS pillars�Ref. 24�: ho=100 nm, do=285 nm, �T
=46 °C, �expt=2.9�0.6 �m. �d� AFM image of PMMA pillars�Ref. 30�:
ho=100 nm, do=163 nm, �T=10 °C, �expt=6.5 �m.
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comprehensive set of experiments and determined the influ-
ence of the initial film thickness ho, the wafer separation
distance do, and temperature drop �T on the pillar separation
distance �. They ruled out any electrostatic effects by pur-
posely grounding the confining wafers.

As noted both by Chou et al.21 and Schäffer et al.,25

films ranging in thickness from millimeters to centimeters
subject to a transverse thermal gradient are known to develop
cellular instabilities which lead to periodic surface deflec-
tions at the air/liquid interface due either to RB or BM
convection.27 These instabilities, however, generate very
shallow corrugations and not pillarlike protrusions as ob-
served in nanofilms. Onset of instability requires that the
critical Rayleigh number Raonset for buoyancy driven flow
�which scales as ho

4� or the critical Marangoni number
Maonset for TC flow �which scales as ho

2� exceed 660–1700 or
50–80, respectively, depending on the boundary conditions
�BCs�. In the nanofilm experiments, the corresponding val-
ues are estimated to be Ra�10−16 and Ma�10−8, orders of
magnitude less than required for onset of instability.

Schäffer et al. therefore proposed a different mechanism
for instability based on an analysis of radiation pressure ef-
fects. They hypothesized that low frequency acoustic
phonons �AP� can reflect coherently from the interfaces of
the molten film over distances of the order of the film thick-
ness despite that the melt is in an amorphous state. These low
frequency modes are believed to generate a significant desta-
bilizing radiation pressure while conducting little heat. By
contrast, the high frequency modes are expected to propagate
diffusively with little interfacial resistance and therefore little
interfacial pressure. These modes, however, are essential for
establishing the steady-state heat flux across the air and melt
layers. The mechanism described represents a kind of acous-
tic analogue of the radiation pressure caused by optical pho-
non reflections in closely spaced metal plates placed in
vacuum, known to generate the Casimir interaction force.28

Since the air/melt interface is liquidlike and therefore de-
formable, the AP in the polymer melt are believed to gener-
ate an outwardly oriented radiation pressure, which counter-
acts the stabilizing force of surface tension; infinitesimal
surface deflections can therefore grow into sizeable protru-
sions. Schäffer et al. developed a detailed hydrodynamic
model based on the slender gap approximation for describing
the evolution equation for the film thickness, h�x ,y , t�. A
linear stability analysis of this evolution equation leads to an
analytic expression for the wavelength corresponding to the
fastest growing unstable mode, namely,

�max
AP = 2	ho� 
up

Q�1 − ��kair�T
	do

ho
+ � − 1
 , �1�

where 
 denotes the surface tension of the polymer melt, up

is the speed of sound in the polymer melt, and �=kair /kmelt

denotes the ratio of thermal conductivity of air to that of the
polymer melt. The parameter Q represents the acoustic qual-
ity factor determined from the phonon reflection and trans-
mission coefficients corresponding to the four media consti-
tuting the system, namely the bottom silicon wafer, the
polymer melt, the overlying air layer, and the top silicon
wafer. Positive values of Q lead to film destabilization and

the formation of nanopillar arrays. Schäffer et al. compared
the prediction for �max

AP directly with the pillar spacings ob-
tained in experiment, �expt. �The material constants in Eq. �1�
were evaluated at the substrate temperature T2.� A least
squared fit of the experimental data to the model with Q and
up as fitting parameters produced good agreement �see
dashed curves in Fig. 3�b��. In particular, the value of Q did
not vary with ho, do, or �T. The acoustic quality factor Q
depended on the choice of substrate; it was found that Q
=6.2 for a silicon/air/PS/silicon system and Q=83 for a PS
film on a gold coated �100 nm� silicon wafer. Schäffer et al.26

included in their measurements values for �max
AP obtained not

only from hexagonal arrays but also lamellar arrays, spirals,
and other patterns nucleated by film defects. Perhaps most
problematic for comparison to linear stability analysis was
the fact that measurements of the pillar spacing were ob-
tained from vitrified patterns examined after the fluid had
experienced prolonged contact with the cooler substrate.

Schäffer et al. concluded that a novel instability based
on radiation pressure from interfacial reflections of low fre-
quency AP was responsible for the formations observed.
They also hypothesized that the frequency dependence re-
quired for propagation of phonons with large mean free path
would prevent this phenomena in low molecular weight films
due to the absence of glassy rheological response.25 In a
separate study, Schäffer et al.29 also conducted experiments
in which the top substrate was patterned with complex relief
structures held in close proximity to the polymer melt inter-
face. The smallest values of do /ho led to well defined replica
patterns in the polymer film.

3. Experiments by Peng et al.

Shortly following the work of Schäffer et al., Peng et
al.30 used a similar assembly as in Fig. 1�a� to study PMMA
films with ho�100 nm, T2=160 °C, 130 °C�T1

�150 °C, and 110�do�210 nm. They were able to obtain
nanopillar arrays after about 0.5–2.5 h; however, they did not
conduct a parametric study nor compare their measurements
of the pillar spacing with the prediction of Schäffer et al.
Fourier transforms of the nanopillar arrays showed well de-
fined hexagonal symmetry in some cases, as shown in Fig.
1�d�. In other experiments, the pillar formations adopted ei-
ther stripe or spiral symmetry. Peng et al. used a simple
energy minimization argument first introduced by Schäffer et
al. to show that pattern selection between stripe and hexago-
nal arrangements is merely controlled by the thickness of the
overlying air film, while spiral formations are likely caused
by point defects in the film. In a final experiment, Peng et al.,
successfully transferred nanopillar patterns first formed in
PMMA onto an elastomeric film of poly�dimethylsiloxane�
�PDMS�, i.e., negative replication of the original pattern.
This demonstration outlined the ease with which potential
patterns can be transferred into subsequent films for applica-
tions involving large area patterning.

B. Motivation for this study

In recent work,31 we re-examined the prevailing hypoth-
esis for pillar formation in nanofilms based on coherent re-
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flections of AP in molten polymer nanofilms.25,29 Such a
mechanism requires coherent phonon propagation of the or-
der of the film thickness in an amorphous fluid layer. A re-
view of the literature has shown that acoustic phonon mean
free paths of the order of 10–100 nm have only been mea-
sured in solid polymer nanofilms at frequencies of order 100
GHz and at temperatures −193 °C�T�27 °C,32 far below
the temperatures used in the experiments described above.
Such long attenuation lengths, however, are highly unlikely
in molten amorphous films far above Tg because of the de-
gree of disorder present and the enhanced mobility of poly-
mer chains at temperatures above Tg.

Given that the free surface of thin liquid films is easily
deformed by surface stresses,15 we instead demonstrate in
this work that nanopillar formations are caused by the nano-
scale analogue of the long-wavelength BM instability,33–36

previously investigated for film thicknesses ranging from
several hundred microns �70�ho�270 �m �Refs. 36 and
37�� to millimeters. In macroscopically thicker films, film
protrusions caused by TC flow are stabilized by capillary and
gravitational forces. Only gentle surface deflections are
therefore possible.37 Onset of instability in such films re-
quires that the inverse dynamic Bond number Donset

dyn

=
T�Tfilm /�gho
22 /3�1+F�−1, where � is the liquid density,


T��d
 /dT�, 
 is the liquid surface tension, �Tfilm is the
temperature difference across the liquid layer �i.e., not the
temperature difference between the supporting substrates�,
F= �1−�� / �D+�−1� is an order one constant, D=do /ho, and
�=kair /kmelt. Estimates for the experiments of Schäffer et al.
and Peng et al. indicate that Ddyn�O�107� and G
�O�10−14�. These critical values lie far beyond the regime
investigated by VanHook et al.36,37 for which Donset

dyn

�O�10−1–1� and G�O�10−1–102�. According to this analy-
sis, nanofilms dominated by TC flow should therefore always
be linearly unstable. In what follows, we propose an alterna-
tive mechanism to the acoustic phonon model to help explain
the formation of elongated structures in liquid nanofilms sub-
ject to a transverse thermal gradient. Our analysis indicates
that the experiments conducted by Schäffer et al. and Peng et
al. provide a rare window into the dynamics of the �lesser
known� long-wavelength BM instability without interference
from the conventional short-wavelength BM instability,
known to generate beautiful cellular convection patterns so
often photographed.

There is an additional feature worth emphasizing in Fig.
1�a�. In the absence of a top wafer, a transverse thermal
gradient can still be established in a film heated from below
by natural or forced convection within the gas layer above
the polymer melt. Since the Biot number �ho /kmelt is linearly
proportional to the polymer film thickness ho �where � is the
heat transfer coefficient for natural convection�, however,
this number will be small. As a result, the thermal gradient
within the viscous film will also be small and TC stresses at
the interface may be easily stabilized by capillary forces.
This is probably the reason why no fluid elongations were
observed in the experiments of Chou et al. in which the
polymer melt was heated in open air. Use of a top substrate
maintained at a cooler temperature held in close proximity to

the melt surface enforces a sizeable transverse thermal gra-
dient which can be used to maximize and control TC flow.

In this work we demonstrate that the predominance of
TC forces along the free surface of molten nanofilms leads to
a linearly unstable system which forms periodic protrusions
no matter how small the applied thermal gradient in any
liquid nanofilm, not just molten polymeric films. The analy-
sis corresponds to a limiting case of BM flow peculiar to
viscous films of nanoscale dimensions such that hydrostatic
forces are completely negligible and deformation amplitudes
are small in comparison to the array pitch. Predictions of the
pillar spacing from the linear analysis, as a function of the
substrate separation distance, reveals good agreement with
experiment. Deviations are likely due to overestimates in the
reported values of ho for unannealed films, uncertainties in
the measured values of do caused by the use of a tilted upper
plate, and possible changes in wavelength caused by pro-
longed contact with the cooler substrate and film solidifica-
tion prior to measurements of the array pitch. Finite element
simulations of the full nonlinear equation are also used to
examine the array pitch and growth rates beyond the linear
regime. Inspection of the Lyapunov free energy as a function
of time confirms that in contrast to typical cellular instabili-
ties in macroscopically thick films, pillarlike elongations are
energetically preferred in nanofilms. Provided there occurs
no dewetting during film deformation, it is shown that fluid
elongations continue to grow until contact with the cooler
substrate is achieved. Identification of the mechanism re-
sponsible for this phenomenon may facilitate fabrication of
extended arrays for nanoscale optical, photonic, and biologi-
cal applications.

II. EVOLUTION OF MOLTEN NANOFILMS SUBJECT
TO THE SLENDER GAP APPROXIMATION

A. Films confined by parallel substrates

The molten layer is modeled as an incompressible New-
tonian fluid since the flow speeds and shear rates inherent in
the experiments described are very small. Consistent with the
slender gap approximation, all lateral dimensions are scaled
by the pillar spacing distance L, while all vertical scales are
normalized by the initial film thickness ho such that �X ,Y�
= �x /L ,y /L�, Z=z /ho, H�X ,Y ,��=h�x ,y , t� /ho, and Do

=do /ho. The pillar spacing L will later be identified with the
wavelength of the maximally unstable mode, �max, obtained
from linear stability analysis. The conservation equations for
mass and momentum within the thin liquid film are given by

�U/�X + �V/�Y + �W/�Z = 0, �2�

�Re
DU

D�
− �2 �2U

�X2 +
�2U

�Y2� = −
�P

�X
+

�2U

�Z2 , �3�

�Re
DV

D�
− �2 �2V

�X2 +
�2V

�Y2� = −
�P

�Y
+

�2V

�Z2 , �4�

�3Re
DW

D�
− �2�2�2W

�X2 + �2�2W

�Y2 +
�2W

�Z2 � = −
�P

�Z
. �5�
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Equation �2� yields the scaling for the velocity components,
namely U� = �U ,V ,W�= �u /uc ,v /uc ,w /�uc�, where uc repre-
sents the characteristic lateral speed set by TC flow. The
corresponding Reynolds number based on the initial film
thickness is Re=�ucho /�, where � and � denote the polymer
melt density and viscosity. In what follows, the polymer vis-
cosity is assumed constant �i.e., a Newtonian fluid� and equal
to �=��T2�.38 The nondimensional Lagrangian or substantial
derivative is denoted by D /D�=� /��+U� ·� where the di-
mensionless time �=uct /L. The overall dimensionless pres-
sure in the fluid is given by

P = �ho�p + ��/��uc� , �6�

where p is the �dimensional� capillary pressure and � repre-
sents contributions from hydrostatic pressure �i.e., �=�gz
where g is the gravitational constant� and disjoining pressure
�e.g., van der Waals forces�.

Within the slender gap approximation, �2= �ho /L�2�1
and �Re→0; all terms on the left hand side of Eqs. �3�–�5�
therefore vanish. In this limit, the pressure P within the thin
film is independent of the vertical coordinate Z. Equations
�3� and �4� can therefore be integrated with respect to Z,
subject to the BCs at the liquid/solid and gas/liquid interface.
Along the bottom substrate, it is assumed that the melt obeys
the no-slip condition, i.e., U� � = �U ,V�=0. The dimensional
stress jump across the air/melt interface,39 which accounts
for both normal and tangential stresses, is given by

�Tair − Tmelt� · n̂ + �s
 − 
n̂��s · n̂� = 0. �7�

Here, T=−�p+��I+2�E denotes the total bulk stress tensor,
where I is the unit tensor and E the rate of strain tensor, n̂
denotes the unit vector outwardly pointing from the melt
interface, �s represents the surface gradient operator40 and 

is the surface tension of the polymer melt in air. Since the
viscosity and density of air are negligible in comparison to
those of the melt, Eair=0.

TC flow within the melt is caused by a nonvanishing
shear stress �s
 along the gas/liquid interface.39 After a
straightforward derivation, it can be shown within the slen-
der gap approximation35 that the tangential components of
Eq. �7� reduce to

�U/�Z�Z=H�X,Y,�� = ��/�X , �8�

�V/�Z�Z=H�X,Y,�� = ��/�Y , �9�

where the surface gradient simplifies to �s=��

= �� /�X ,� /�Y�. The variable �=�
 / ��uc� represents the di-
mensionless surface tension. The gradients in surface tension
arise directly from thermal gradients along the melt interface,
i.e., ��
= �d
 /dT���T. In dimensionless form, this relation is
given by

��� = −
�
T

�uc
��T�Z=H = − Ma����Z=H, �10�

where �= �T−T1� / �T2−T1�, 
T= �d
 /dT�, �T=T2−T1, and
the Marangoni number Ma=�
T�T / ��uc�. In what follows,
it is assumed that T2−T1�0; furthermore, for the liquid
films of interest, the surface tension decreases linearly with

increasing temperature T, which is reflected in the choice of
the negative sign above.

The in-plane velocity components are therefore given by

U� � = U

V
� = Z2

2
− HZ���P + Z��� . �11�

Equation �11� represents a linear superposition of pressure
driven flow caused by variations in interfacial curvature and
hydrostatic forces, as described by Eq. �15�, and shear driven
flow induced by TC stresses. Substitution of Eq. �11� into Eq.
�2� followed by integration subject to the condition
W�X ,Y ,Z=0�=0 gives the vertical component of the veloc-
ity field,

W = HZ2

2
−

Z3

6
���

2P +
Z

2
���P · ��H − ��

2�� . �12�

The evolution equation for the moving interface can then be
determined by integration of Eq. �2� from 0�Z
�H�X ,Y ,�� subject to W�X ,Y ,Z=0�=0 and the kinematic
BC, W �Z=H=DH /D�=�H /��+U� �Z=H ·�sH. The Leibnitz rule
for differentiation gives

�H

��
+ �� · �

0

H�X,Y,��

U� �dZ� = 0. �13�

Substitution of Eq. �11� leads to the evolution equation for
the melt interface H�X ,Y ,��, namely

�H

��
+ �� · H2

2
��� −

H3

3
��P� = 0. �14�

It is expected that the slender gap approximation remains
valid throughout the growth process so long as �do /L�2�1,
which holds for all the experiments described.

Since the pressure in the film is independent of Z to
order �3Re, one can determine its value by considering the
normal stress balance at Z=H. The normal component of Eq.
�7� within the slender gap approximation yields the total
pressure in the film to order �2

P = − Ca−1��
2H + Ca−1BoH , �15�

where the Capillary number Ca=�uc / �
�3� and the Bond
number Bo=�gL2 /
. Parameter estimates from the experi-
ments of Schäffer et al. indicate that Ca is of the order of
101–102 �using Eq. �21�� while Bo is of the order of
10−5–10−6. The hydrostatic contribution to the fluid pressure
in Eq. �15� can therefore be neglected altogether. The influ-
ence of disjoining pressure arising from van der Waals inter-
actions in films of the order of 100 nm in thickness35 is also
ignored in this work. The flow induced by these molecular
forces is weak in comparison to flow induced by TC stresses,
which are of considerable magnitude in the experimental
systems of interest. While disjoining pressure effects can be
included in straightforward fashion within P, they are not the
primary mechanism for instability. Furthermore, there is yet
no consensus in the literature on the appropriate analytic
form of the disjoining pressure in cases where films are sub-
ject to large thermal gradients; most of the simplified forms
available in the literature are only appropriate for isothermal
systems. It is also assumed that any TC effects caused by

074308-5 M. Dietzel and S. M. Troian J. Appl. Phys. 108, 074308 �2010�

Downloaded 08 Nov 2010 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



solvent evaporation and subsequent cooling of the interface41

can be neglected. This assumption requires that solvent
evaporation be completed �either naturally or by film anneal-
ing� before the film is inserted into the experimental assem-
bly.

With these assumptions, the gradient of the Laplace
pressure is given by

��P = − Ca−1��
3H − �2��

2H��� . �16�

The last term, which represents a correction to the Laplace
pressure due to local variation in surface tension, scales as �2

and can be safely ignored. The surface tension coefficient in
the Laplace pressure only is therefore set to the value 

=
�T2�.

Determination of the interfacial stress conditions in Eqs.
�8� and �9� requires knowledge of the thermal distribution
along Z=H, which can be obtained from the energy
equations35 pertaining to the confined air/liquid bilayer
shown in Fig. 1

�RePr
D�

D�
− �2 �2�

�X2 +
�2�

�Y2 � =
�2�

�Z2 . �17�

Here, the Prandtl number Pr=� /� refers to the kinematic
viscosity � and thermal diffusivity � of the corresponding air
or liquid melt layer. The Reynolds number Re, defined pre-
viously, is based on the corresponding layer thicknesses. De-
spite that Pr is of the order of 108–109 for the polymer melts
of interest, the small gap approximation coupled with the
vanishingly small value of Re �see Tables I and II� ensures
that the left hand side of Eq. �17� is completely negligible. In
fact, the slender gap approximation is well satisfied in all the
experiments described since �2�1, �Re�1, and �RePr�1.
The thermal analysis conveniently reduces to a one dimen-
sional thermal conduction problem for heat flow across an
air/liquid bilayer subject to isothermal BCs at Z=0 and Z
=Do. The temperature distribution along the melt interface is
therefore given by, � �Z=H= �Do−H� / �Do+ ��−1�H�. Substi-
tution of this solution into Eq. �10� yields

��� =
�MaDo��H

�Do + �� − 1�H�2 . �18�

Substitution of Eq. �16� and �18� into Eq. �14� then
yields the expression governing the motion of the air/liquid
interface, namely,

�H

��
+ �� · 	 �DoMaH2

2�Do + �� − 1�H�2��H +
H3

3Ca
��

3H
 = 0.

�19�

The characteristic scale for the lateral velocity, uc, is set to
the value established by TC flow, which can be obtained
from Eq. �18� by letting the film thickness, slope, and and
interfacial stress be order one and equal to unity, i.e., H=1,
��H=1, and ��U /�Z�Z=H=�� /�X=1, such that

Ma =
�Do + � − 1�2

�Do
. �20�

Since Ma=�
T�T / ��uc�, the scale for uc becomes

uc =
��Do
T�T

��Do + � − 1�2 . �21�

The evolution of film disturbances governed by TC ef-
fects, as given by Eq. �19�, is compared to evolution by
acoustic phonon radiation pressure, as proposed by Schäffer
et al. While their derivation is also based on the slender gap
approximation, the acoustic phonon model neglects alto-
gether any flow induced by tangential stresses due to inter-
facial thermal gradients. Instead, the Laplace pressure, is
counteracted by a radiation pressure due to phonon reflec-
tions which causes protrusions to grow. The overall fluid
pressure in the AP model is therefore given by

P = − Ca−1��
2H − Ca−1Q̄/�Do + �� − 1�H� , �22�

where Q̄=2Qkair�T / �up
�
2� and Q is the acoustic quality

factor described in the Introduction. Substitution of Eq. �22�
into Eq. �14� �with ���=0 since TC effects play no role in
the acoustic phonon model� yields the evolution equation
proposed by Schäffer et al.

�H

��
+ �� · 	 Q̄�1 − ��H3

3Ca�Do + �� − 1�H�2��H +
H3

3Ca
��

3H
 = 0.

�23�

Values for the thermophysical properties of air and PS are
listed in Table II. Corresponding numbers for experiments

TABLE I. Order of magnitude estimates extracted from the experiments of
Schäffer et al. �Refs. 24 and 25� for characteristic numbers used in the TC
model. Values of Pr for PS and PMMA at 170 °C were obtained from Refs.
23 and 53. The capillary number, Ca, is a constant since the TC velocity is
used to scale the characteristic flow speed, as discussed in the section fol-
lowing Eq. �30�.

� 10−3–10−2

Re 10−18–10−17

Pr 108–109

Ma 100–101

Ca 52.6
Bo 10−5–10−6

TABLE II. Literature values for air and polystyrene melt �Mn

�107 kg /mol and Mw /Mn=1.07 where n and w denotes number average
and weight average� used in the analysis and numerical simulations. All
parameter values quoted are for T=170 °C, except for 
 and 
T, which were
only available for T=180 °C. For comparison, Schäffer et al. �Refs. 24 and
25� used polystyrene melts for which Mn�108 kg /mol and Mw /Mn=1.03.

Air PS

� �kg /m3� 0.829a 987b

� �Pa s� 2.48�10−5 a 2.5�104 c

k �W / �m °C�� 0.036a 0.130b

� �m2 /s� 4.25�10−5 a 6.45�10−8 b


 �10−3 N /m� 31.53d


T �10−3 N / �m °C�� 0.0885d

aReference 54.
bReference 23.
cReference 53.
dReference 55.
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with PMMA �Ref. 30� are of similar magnitudes.

1. Linear stability analysis of evolution equation

Equations �19� and �23� can be further analyzed by lin-
ear stability theory to provide an estimate of the fastest
growing mode, the one most likely to be observed in experi-
ment. Predictions of the corresponding wavelength are there-
fore expected to compare favorably with the pillar spacing
measured in experiment if the proposed mechanism is cor-
rect.

The behavior of Eq. �19� is examined in the limit where
an initially flat and uniform film of thickness H=1 �i.e., base
state� is subject to an infinitesimal periodic perturbation of

amplitude �Ho
˜�1 and wave number K� � where �K� ��=K

=2	L /�. Solutions of the form H�X ,Y ,��=1

+�Ho
˜ exp���K���exp�iK� � ·X� �� are substituted into Eq. �19�,

where X� � = �X ,Y�, and all quadratic or higher order terms are
neglected. The resulting expression for the growth rate is

��K� =  �DoMa

2�Do + � − 1�2 −
K2

3Ca
�K2. �24�

Disturbances for which ��K�=0 neither grow nor decay. This
condition establishes the criterion for marginal �M� stability
where the corresponding wave number, KM, for the TC
model, is given by

KM
TC =�3

2

�DoMaCa

�Do + � − 1�2 . �25�

We note that in the absence of any stabilizing hydrostatic
terms, there always exists a band of wave numbers 0�K
�KM

TC for which a nanofilm is linearly unstable, no matter
how small the temperature difference between the supporting
substrates. This stands in sharp contrast to the TC instability
in much thicker films36,37 for which KM

= �3�DoMaCa / �2�Do+�−1�2�−Bo�1/2 and the critical Ma-
rangoni number for onset of instability is

Maonset =
2

3

Bo

Ca

�Do + � − 1�2

�Do
. �26�

The fastest growing wave number for the nanofilms is
determined from the extremum of ��K� in Eq. �24�, such that
Kmax

TC =KM
TC /�2=2	L /�max. In dimensional units, the wave-

length of the most unstable mode is given by

�max
TC = 2	ho� 4
ho

3�do
T�T
	do

ho
+ � − 1
 . �27�

This expression provides an estimate of the average spacing
between protrusions undergoing growth by TC flow. For the
nanofilm experiments described earlier, ho�O �100 nm�,
ho�do�8ho, and �T�10–50 °C. This leads to predictions
of the pillar spacings ranging from about 2–20 �m. �More
detailed comparison to experiments will be discussed in Sec.
III.� According to Eq. �27�, the characteristic lateral spacing
between nanopillars is determined by the initial film thick-
ness, ho, as well as the gap ratio Do=do /ho, the ratio of the
surface tension to the maximum change in surface tension,

 / �
T�T�, and the ratio of thermal conductivities �

=kair /kmelt. For cases in which the geometry and material
properties are held fixed, a larger thermal gradient produces
more closely spaced pillars. Reversal of the thermal gradient
such that T2�T1 should lead to linearly stable films.

Figure 2�a� represents solutions to Eq. �27� for a poly-
styrene film at T2=170 °C with �T=43 °C. Smaller gap
ratios Do lead to smaller values of pillar spacing since the
film is subject to a larger effective thermal gradient. Figure
2�b� highlights the dependence of �max

TC on the initial film
thickness ho for various gap widths do and �T=43 °C. As
evident, the prediction for �max

TC depends sensitively on ho,
especially for the smallest values of ho.

The linear stability analysis of Eq. �23� yields a predic-
tion for the fastest growing wavelength for the acoustic pho-
non model, namely Eq. �1�. The ratio of dominant wave-
lengths corresponding to the two proposed mechanisms is
given by

�max
TC

�max
AP =�4Qkmelt�1 − ��

3up
TDo
. �28�

Future experiments conducted with parallel substrates for a
wider range of Do should help identify the operating mecha-
nism leading to pillar formation.

The characteristic velocity defined earlier in Eq. �21�,
which sets the scale for the lateral flow speed based on TC
stress, can be re-expressed in terms of the length scale �max

TC

obtained from linear stability analysis

uc = �
�4	�2

3
 ho

�max
TC �2


�
=

�4	�2

3
�3

�
� . �29�

Here, the lateral scale L used to define the slender gap pa-
rameter, �=ho /L, is identified with �max

TC . Similarly, the char-

(a)

(b)

do

m

ho (nm)

D0=d0 /h0

TC
TC

FIG. 2. Solutions of Eq. �27� for �=0.277 and �T=43 °C. Curves show a
sharp decrease in �max

TC for the smaller values of ho.
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acteristic timescale based on TC flow is given by

tc =
�max

TC

uc
=

3ho

�4	�2�4�
� . �30�

Estimates from the experiments of Schäffer et al. indicate
that uc is of the order of 10−1–101 nm /s and tc

�O�10−1–102 hrs�. If the TC flow speed uc given by Eq.
�29� is used to define the capillary number, then Ca
= �4	�2 /3, a fixed constant. Replacing the capillary number
by this numerical value and substituting the expression for
the Marangoni number given by Eq. �20� into the interface
equation Eq. �19� yields the following form of the evolution
equation:

�H

��
+ �� · �	 Do + � − 1

Do + �� − 1�H
2H2

2
��H +

H3

�4	�2��
3H� = 0.

�31�

For thicker films, hydrostatic forces can be reincorporated
into this expression by including the term −BoH3��H / �4	�2

in the curly brackets. During the early stages of film defor-
mation when H and ��H are order one, the relative magni-
tude of terms in Eq. �31� reveals the basis for pillar forma-
tion. The ratio of TC to capillary flux scales as 8	2, while the
ratio of TC to gravitational flux scales as 8	2 /Bo
�107–108. These estimates reveal that TC forces overcome
the stabilizing effect of capillary and gravitational forces
even at early times. In Sec. IV B, it is shown that TC forces
prevail even more strongly at late times for parameter values
pertinent to the nanofilm experiments. A similar comparison
can be made using the parameter values in the experiments
of VanHook et al.42 with thicker films �70�ho�270 �m�
and much smaller transverse thermal gradients �180�T2

−T1 /do�500 °C /cm�. While the TC to capillary flux ratio
remains at 8	2, the TC to gravitational flux ratio decreases to
10−1, eight to nine orders of magnitude smaller than the ratio
obtained in nanofilm experiments. While gravitational forces
effectively repress the growth of pillars in macroscopically
thick films, this order of magnitude analysis confirms that
hydrostatic forces are ineffective in repressing the growth of
elongations in nanoscale films.

Integration of the full nonlinear Eq. �19� can be used to
compute a lower bound on the time interval, ttop, required for
nanopillars to contact the cooler substrate within the approxi-
mation of a constant film viscosity.38 It will be shown in Sec.
IV A that estimates obtained from the growth rate of the
most unstable mode, ��Kmax�, are in fairly good agreement
with the estimates obtained from numerical solutions of Eq.
�19� for the parameter range of interest. Substitution of Eq.
�20� and Ca= �4	�2 /3 into Eq. �24� and Eq. �25� yields the
simplified expression for the growth rate

�TC�K� = �1/2 − �K/�4	��2�K2. �32�

The wave number corresponding to marginal stability is
therefore KM

TC=4	 /�2. Since Kmax
TC =KM

TC /�2=2	, the growth
rate for the fastest growing mode simply reduces to �max

TC

=	2. Setting �Ho
˜ exp���Kmax���=Do−1 leads to the expres-

sion �top= ln��Do−1� /�Ho
˜ �/	2, which in dimensional

units corresponds to ttop= �3�ho /
���max
TC / �2	ho��4ln��Do

−1� /�Ho
˜ �. Substitution of Eq. �27� into this expression then

gives

ttop =
16�
ho�Do + � − 1�4

3��Do
T�T�2 lnDo − 1

�Ho
˜

� . �33�

Estimates of ttop for the nanopillar experiments range from
about tens of minutes to tens of hours for the largest gap

spacings used and �Ho
˜ =10−5. Low molecular weight poly-

mers with much smaller viscosities require proportionally
less time to contact the cooler top substrate. Studies of this
sort are useful in determining when to remove the thermal
gradient in order to form nanopillars of specified height.

2. Lyapunov free energy for evolving interface

Hydrodynamic systems subject to interfacial instability
sometimes exhibit steady states as observed in RB or BM
cellular convection. Within the context of the experiments
described, this would require pillar formations which once
formed, neither grow nor decay, representing a fixed spatial
configuration while the melt continues to undergo surface
and interior flow. To examine this possibility, one can inves-
tigate the temporal behavior of the Lyapunov free energy
associated with the evolving interface, as previously imple-
mented in Refs. 43 and 44. This approach is based on the
analysis of interface problems using the well known form of
the Cahn–Hilliard free energy for systems with spatial varia-
tion in an intensive scalar variable like composition or
density.45 The Cahn–Hilliard equation has been successfully
used to explore the evolution of moving interfaces in binary
systems undergoing phase separation. This approach, which
involves monitoring the free energy associated with the en-
tire film undergoing deformation, provides a more accurate
assessment of possible steady state configurations than
simple considerations based on Eq. �31� in the limit �H /��
→0.

In the Appendix, it is shown that the free energy corre-
sponding to the nanofilm system is given by F=�LdXdY,
where

L = ���H�2 −
3�MaCa

Do
	H ln H

1 + �H
� + ln�1 + ��
 ,

�34�

and �= ��−1� /Do. Numerical solutions of Eq. �A13� for
large and small values of the gap ratio, Do, are discussed in
Sec. IV B.

B. Films confined by nonparallel substrates

The analysis presented in Sec. II A describes the evolu-
tion of a fluid bilayer interface confined by two flat and
parallel substrates separated by a distance Do=do /ho. As de-
scribed in Sec. I A 2, however, Schäffer and co-workers pur-
posely used in all their experiments a tilted plate geometry in
which the top wafer was inclined with respect to the bottom
one by about 1 �m /1 cm, corresponding to an inclination
angle � of about 0.0057°. The evolution equation can be
modified to account for two flat substrates with relative tilt.
When the cooler substrate is tilted away from the horizontal
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by a constant angle �, the local value of the plate separation
will depend on �X ,Y� such that D�X ,Y�=d�x ,y� /ho. This
modification alters the film surface temperature, � �Z=H, as
well as the surface thermal gradient, �� �Z=H, which in turn
alters the interfacial TC stress, ���. Accordingly,

��Z=H = �D − H�/�D + �� − 1�H� , �35�

����Z=H =
�

�D + �� − 1�H�2 �H��D − D��H� , �36�

and

����Z=H = − Ma����Z=H = �Ma
�D��H − H tan��̄�T� ��

�D + �� − 1�H�2 .

�37�

Here, D�X� ��=Do+tan��̄�T� � ·X� �, where Do represents the gap
ratio at X� � =0 �later identified with the midpoint of the com-
putational domain�. The quantities �̄ and tan �̄=tan � /� rep-
resent variables rescaled according to the slender gap ap-
proximation. In the numerical solutions discussed in Sec.
IV C 2, the tilt of the upper substrate is defined by the unit
vector T� � = �1,1� /�2. Substitution of Eq. �37� into Eq. �14�
leads to the modified evolution equation

�H

��
+ �� · Q� tilt = 0, �38�

where

Q� tilt =
�MaH2�D��H − H tan��̄�T� ��

2�D + �� − 1�H�2 +
H3

3Ca
��

3H . �39�

A linear stability analysis of Eq. �38� �not shown here� con-
firms that the pattern wavelength in Eq. �27� remains unaf-
fected by the small tilt angle used in the experiments of
Schäffer et al. More generally, Eq. �27� remains valid so long

as �tan��̄���O��Ho
˜ �.

III. NANOPILLAR SPACINGS: COMPARISON
BETWEEN EXPERIMENT AND THEORY

Shown in Fig. 3�a� is a direct comparison of Eq. �27�
with the experimental data of Schäffer et al.24,25 The solid
lines denote the predictions of the TC model with no adjust-
able parameter values using the bulk material constants listed
in Table II; the symbols denote the experimental data. Except
where noted, all material constants were evaluated at the
temperature of the bottom substrate, namely, 170 °C.

While the overall functional behavior of �max
TC with do is

in good agreement with experiment, the model systemati-
cally overestimates the pillar spacings, in some cases by as
much as 40%. This is especially evident in experimental run
B for which ho=96 nm and �T=11 °C. Before discussing
these discrepancies in detail, it is useful to examine a least-
squares fit of the data to the function �max

TC =C1do
1/2+C2do

−1/2

given by Eq. �27�, as shown in Fig. 3�b�. Listed in Table III
is a comparison of the analytic expressions for the two con-

stants, namely C1
TC=2	�4ho
 / �3�
T�T��1/2 and C2

TC=C1��
−1�ho, along with the results for the fitting constants denoted
by CFit.

In general, the agreement between the TC model and
experiment improves for larger values of �T. However,
given that the least squares fit captures the experimental
trend with increasing values of ho and do so well, it is worth
considering what experimental difficulties might also have
affected the measurements. For completeness, we include in
Fig. 3�b� two additional dashed lines for runs B and C, which
represent a least squares fit of the data to Eq. �1� with Q
=6.2 and up=1850 m /s, the same fitting constants reported
by Schäffer et al.24,25

A. Possible causes of discrepancy between theory
and experiment

There are several experimental challenges in performing
the experiments on nanopillar formation. Perhaps the most
important is that all experiments to date have used silicon
wafers to confine the polymer films. These opaque substrates

(a)

( C)o(nm)

(b)

o

(nm) ( C)o

ho �T Expt Eq. (27)

ho �T Expt TC fit AP fit

FIG. 3. �Color online� Direct comparison of theoretical estimates for domi-
nant instability wavelength, �max for both TC and AP models with experi-
mental measurements from Schäffer et al. �Refs. 24–26 and 29� as function
of increasing wafer separation distance do. �a� Plots of Eq. �27� for TC
model with no adjustable parameters for different experiments labeled A-D
using material constants listed in Table II. �b� Plots showing least squares
fits to the TC and AP models. The TC model was fitted to the form given by
Eq. �27�, namely, �max

TC =C1
�do+C2 /�do. AP model was fitted to the function

given by Eq. �1� with up=1850 m /s and Q=6.2 as fitting parameters. Table
III lists the fitting coefficients, C1 and C2, obtained for the TC model.
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prevent observation of the instability in situ. In fact, mea-
surements of the pillar spacings were all obtained long after
the pillars had contacted the cooler wafer. The pillar ampli-
tudes were by then sizeable, possibly violating the assump-
tions of linear stability analysis. Furthermore, the warmer
nanopillars had sustained prolonged contact with a cooler
substrate leading to possible reorganization of fluid due to
thermocapillary or capillary flow along the underside of the
top wafer. Measurements taken after the pillars had solidified
and the top wafer was removed may therefore differ from the
predictions of linear stability theory. In many of the experi-
ments described earlier, measurements of the spacing be-
tween fluid elongations included not only pillar arrays, but
lamellar, spiral and other periodic structures since these were
more commonly obtained. An additional complication is that
a typical molten nanofilm is not completely smooth and flat
due to the presence of contaminant particles and pinholes
caused by dewetting. Any small fluid elevations caused by
these nucleation points are prone to rapid growth when sub-
ject to a thermal gradient. Structures arising from such initial
conditions, however, correspond more to disturbances of fi-
nite amplitude and not infinitesimal amplitudes as assumed
by the linear analysis.

As evident from the curves in Fig. 2, the parameters ho

and do strongly affect the predicted values of �max
TC . The sharp

drop in �max
TC becomes even more pronounced for smaller

values of �T.31 Validation of either mechanism proposed
therefore requires accurate measurements of the film thick-
ness. It appears that the films used by Schäffer et al.24–26,29

and Peng et al.30 were not annealed prior to insertion in the
experimental setup. Spun cast polymer films tend to retain a
significant amount of solvent,46,47 which is normally expelled
by film annealing in vacuum at elevated temperatures for
several hours. �Annealing has the additional advantage of
healing pin holes that sometimes form during spin coating.�
Significant film shrinkage typically accompanies this process
due to solvent evaporation. The degree of film shrinkage
depends on the ambient vapor pressure as well as the time
and temperature of the bake. It is therefore likely that the
values of ho reported in the literature represent overestimates
of the initial film thickness ho. Smaller values of ho lead to
smaller predictions for the pillar spacing, in closer agreement
with experiment.

The distance between pillars in experiment was typically
obtained by direct measurement from optical micrographs. In
future experiments, it would be preferable to characterize the
patterns obtained by an FFT �fast Fourier transform� analy-
sis. This analysis may reveal not only the dominant wave
number but harmonics that develop due to the growth of
smaller pillars in between two larger neighboring ones. Such
an analysis, however, requires a fair number of protrusions
for statistically meaningful results. It may have been the case
with the tilted plate geometry, that the smaller domains cor-
responding to each distinct value of Do forbade use of this
technique.

We conducted an FFT analysis of nanopillar arrays pub-
lished in the literature24–26 and were surprised to find a very
wide distribution in pillar spacings even within a single ex-
periment. Often there appeared not a single dominant wave-
length but several competing wavelengths. This finding
prompted a sensitivity analysis of Eq. �27� to better under-
stand which variables most strongly affect the uncertainty in
measurements of �max

TC =�max
TC ��i�, as defined by U�max

TC

=��i�S�i��i /�i�2. Here, the relative sensitivity coefficients
are given by S�i =�i��max

TC /��i where �i

= �
 ,
T ,�T ,� ,Do ,ho�. This analysis demonstrates that
S
=−S
T

=−S�T=1 /2�max
TC , S�= �� / �Do+�−1�−1 /2��max

TC ,
SDo

= �Do / �Do+�−1�−1 /2��max
TC , and Sho

= �1 /2+ ��−1� / �Do

+�−1���max
TC . Typical values for these sensitivity coefficients

for the parameter values corresponding to the experiments of
Schäffer et al. are summarized in Table IV. The gap ratio,
Do=do /ho, most significantly influences the degree of uncer-
tainty in measurements of �max

TC .

IV. NUMERICAL SIMULATION OF THIN FILM
EQUATION: LINEAR AND NONLINEAR REGIMES

To investigate the extent of nonlinear effects on the
growth of nanopillars, we also conducted 3D finite element

TABLE III. Coefficients obtained from a least squares fit to the data of Schäffer et al. �Refs. 24 and 25�.
Experimental data were fit to the function �max

TC =C1do
1/2+C2do

−1/2 given by Eq. �27�, where �max
TC is reported in

�m and ho and do in nm. The values CFit represent the fitting parameters for the least squares fit shown in Fig.
3. The values CTC represent the predictions of the TC model given by Eq. �27� �with no adjustable parameters�
using the material constants listed in Table II. Percentage errors represent �CFit−CTC� /CTC.

A B C D

ho �nm� 80 96 100 130
�T �°C� 43 11 46 28

C1
TC ��103 �m�0.5� 0.36 0.77 0.38 0.56

C2
TC ��10−1 �m�1.5� �21 �53 �28 �53

C1
Fit ��103 �m�0.5� 0.35�0.036 0.65�0.058 0.38�0.031 0.34�0.071

C2
Fit ��10−1 �m�1.5� −35�7.5 −65�12 −46�8.7 −31�13

% error C1 �0.53 16 1.2 39
% error C2 �69 �21 �66 42

TABLE IV. Typical values of sensitivity coefficients, S�i, normalized by
�max

TC where �i= �
 ,
T ,�T ,� ,Do or ho� �see Eq. �27��.

S
 /�max
TC 0.5

S
T
/�max

TC , S�T /�max
TC �0.5

S� /�max
TC �0.5–��0.25�

SDo
/�max

TC 0.6–1.1
Sho

/�max
TC 0–0.4
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simulations of Eq. �19� using a commercial software
package.48 Material properties corresponding to molten poly-
styrene �PS� were used in these numerical studies �see Table
II�. The computational domain corresponded to a square of
size �X��Y =6�max

TC �6�max
TC �according to Eq. �27��, where

spatial discretization was obtained via second order Lagrang-
ian shape functions. These choices reflect a compromise be-
tween available computational resources and generation of a
sufficient number of peaks for FFT analysis. Periodic BCs
were enforced along the domain edges �except for the simu-
lations using tilted substrates�. A quadrilateral mesh consist-
ing of 200�200 elements was applied for the coarse �non-
extended� discretization, leading to an extended system of
equations with about 5�105 degrees of freedom. An im-
plicit Newton iteration scheme was used to advance the po-
sition of the film interface in time; the linear system of equa-
tions for each iteration was solved using the iterative solver
generalized minimal residual method �GMRES�. All simula-
tions were conducted on HP ProLiant DL360 G4p worksta-
tions equipped with dual Intel Xeon 3.0 GHz processors run-
ning CENTOS 4.6. The typical growth of a nanopillar spanning
two substrates �i.e., �=�top� required approximately 5–6 h of
CPU time, corresponding to about 900-1000 integration
steps. Numerical convergence tests were conducted by evalu-
ating the local dimensionless film height at N=40,000 inter-
polation points within the square domain. These tests con-
firmed that both the average difference, �Havg

=�i=1
N �H2�X ,Y ,�top�−H1�X ,Y ,�top�� /N, as well as the maxi-

mum difference, �Hmax=max�H2�X ,Y ,�top�−H1�X ,Y ,�top��,
in film height at the end of a run �i.e., �=�top� were less than
10−4 when decreasing the grid size or integration time step.
Here, H1 denotes the coarser measurement and H2 the refined
one. Further tests revealed that the film volume was con-
served during each run to a value �V /V= ���H�X ,Y ,�top�
−H�X ,Y ,�=0��dXdY� / ��X�Y��10−10.

In all simulations conducted, the thickness of the initial
flat film was modulated by a very small amount of white
noise such that H�X ,Y ,�=0�=1+�R, where R denotes a
random number between �1 and +1. The amplitude of the
white noise was set to �=O�10−5�. According to Eq. �33�,
larger values of � will lead to shorter contact times in pro-

portion to −ln��Ho
˜ �. In order to facilitate detailed compari-

son between runs for different choices of experimental pa-
rameters, the random number algorithm was reset before
each run so as to generate an identical white noise distribu-
tion. Initialization with white noise was preferable to initial-
ization by a sinusoidal function, as is common, in order not
to bias the system toward a preferred wavelength too early in
the pillar formation process.

A. Films confined by parallel wafers

FFTs of the in-plane images obtained from the numerical
solution of Eq. �19� were used to extract values of the domi-
nant wavelength, �max

simul���, at each instant in time. This nu-
merical value was compared to the theoretical prediction
�max

TC given by Eq. �27�. Shown in Fig. 4 are results of these
simulations. The FFTs were computed by sampling 200
�200 points within the computational domain for each value

of �; approximately 140 instances in time were so evaluated.
The legend in each plot represents the variables held fixed
during the simulation; the table entries specify the theoretical
values of �max

TC corresponding to the chosen parameter set.
For convenience, the factor used in converting � to real time
t is also listed. The times �o=0, �1=0.06, and �top=1.23
shown in Fig. 4�a� denote the three instances in time for
which the FFTs shown in Fig. 5 were computed. The variable
�top denotes the time at which the fastest growing nanopillar
in a particular run made contact with the cooler substrate, at

(a)

(b)

(c)

TC
m

ax
/

si
m

u
l

m
ax

TC
m

ax
/

si
m

u
l

m
ax

TC
m

ax
/

si
m

u
l

m
ax

IIIII= I

o 1

= II I

TC

TC

TC

(I)
(II)
(III)

(I)
(II)
(III)
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FIG. 4. Direct comparison of �max
TC from Eq. �27� with the instantaneous

wavelength, �max
simul, extracted from FFT analysis of numerical solutions of the

evolving film thickness from Eq. �19� with increasing dimensionless time �.
Symbol �top represents time of contact of the fastest growing pillar with
cooler substrate. Times �o=0, �1=0.06, and �top=1.23 shown in the top
panel refer to time stamps of the snapshot images shown next in Fig. 5. �a�
Variation in the wavelength ratio with increasing temperature difference �T.
�b� Variation in the wavelength ratio with increasing gap separation distance
do. �c� Variation in the wavelength ratio with increasing values of initial film
thickness ho.
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which point the simulation is terminated. The times �top=I,
II, or III indicate this contact time for the parameters values
designated by �I�, �II�, or �III�.

As evident, the overall deviation of �max
simul��� from �max

TC is
rather small regardless of the parameter range used. In all
cases, this ratio rapidly approaches unity as �→1. The only
discernible difference is that the fastest growing peaks re-
quire a longer time to contact the cooler substrate for larger
values of the relative gap spacing Do=do /ho, as expected.
The very short lived but large initial transients are caused by
initialization with white noise; shortly following �=0, there
exist disturbances of all wavelengths. Those contributions
with wave number larger than the cut-off wave number Kc

become rapidly damped. The ratio �max
simul��� /�max

TC then drops
sharply to a value close to one as the maximally unstable
disturbance is established. The approach to unity from below
rather than above is due to the asymmetry in the dispersion
curve ��K� for which there exists a broader band of unstable
wave numbers below Kmax than above.

Additional simulations �not shown for brevity� reveal
that �max

simul /�max
TC →1 by �=1 irrespective of the specific ini-

tialization function used, i.e., white noise or a simple sinu-
soidal function. Initialization by a double cosine wave in

�X ,Y� with wavelength �init=3�max, for example, produced
the same long time behavior shown so long as the amplitude

of the disturbance function satisfied �Ho
̂�1.

Images of the evolving film thickness, H�X ,Y ,��−1, as
seen from above, the corresponding Fourier transform �in-
sets�, and cross-sectional views along the mirror planes X
=0 and Y =0 are shown in Fig. 5 at times �=0, 0.06, and
1.23. The relevant parameters values are ho=100 nm, do

=285 nm, and �T=46 °C, which represent case II� in Fig.
4. The arrow shown in the FFT with unit length denotes the
magnitude Kmax

TC . As evident from the images in Figs. 5�a�
and 5�b�, although the disturbance heights of order 10−5 do
not increase substantially from �=0 to 0.06, an increasingly
regular pattern is already visible, both in the Fourier trans-
form as well the cross sectional views. Figure 5�c� depicts
the in-plane symmetry in a fully evolved film, just as the
fastest growing peak contacts the cooler substrate. Here, the
pillar amplitudes have increased substantially in comparison
to their initial values. By this time, the Fourier transform of
the pattern has evolved from a wide band into a narrow ring
with emerging six-fold symmetry and mean radius Kmax

TC . Val-
ues of the �dimensionless� interfacial shear stress, �X

=�� /�X, along the axis Y =0 for �=1.23 are shown in the
bottom right image. As expected from symmetry, the local
extrema in film thickness along Y =0 �solid black curve� oc-
cur at the locations of vanishing shear stress, i.e., �X=0. The
largest values of ��X� tend to occur near the maxima and
minima in film thickness.

Shown in Fig. 6 is the growth rate ratio, �max
simul /�max

TC , for
the parameter set labeled �II� in Fig. 4. This ratio was com-
puted for each of the six most rapidly growing peaks accord-
ing to

�max
simul

�max
TC =

3�ho



�max

TC

2	o
�4 1

�ho

���ho�
�t

. �40�

Here, �max
TC =	2, as shown in Sec. II A 1.

As in the solutions shown in Fig. 4, here too the numeri-
cal results are initially influenced by the white noise distur-
bance spectrum. Each of the six fastest growing peaks be-
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FIG. 5. �Color online� Numerical solutions of the film thickness,
H�X ,Y ,��−1.0 from Eq. �19� at three instants in time: �a� �0=0 �origin of
time�, �b� �1=0.06 and �top=1.23. Simulation parameters values are ho

=100 nm, do=285 nm, and �T=46 °C. Evolution of the corresponding
dominant wavelength is depicted by case �II� in Fig. 4�a�. Left panel depicts
amplitude H�X ,Y ,��−1.0 �white=elevations, black=depressions�; right
panel depicts cross sectional views along axes X=0 and Y =0. Inset images
show the instantaneous 2D Fourier transform of the corresponding film
thickness. Unit arrows denote magnitude of most unstable wave number,
Kmax

TC =2	, derived from linear stability theory �see discussion following Eq.
�32��. Values of the dimensionless interfacial shear stress, �X=�� /�X, along
the axis Y =0 are shown in the bottom right image.
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FIG. 6. Direct comparison of instability growth rate, �max
TC =	2 �as discussed

in Sec. II A 1�, with instantaneous growth rate, �max
simul, from Eq. �40�, with

increasing time �. Different curves shown correspond to growth rates of six
fastest peaks for parameter values ho=100 nm, do=285 nm, and �T
=46 °C. Inset image depicts film shape for H�X ,Y ,�top=1.23�.
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haves somewhat differently at the earliest times depending
on what is the local value of the disturbance height. How-
ever, the growth rates collapse rapidly by about �=0.4, after
which the average growth rate slowly increases toward the
prediction of linear stability theory, which is established by
about �=1.0. Beyond this time, the solutions reveal rapid
growth and an increasing departure from the predictions of
linear stability theory as nonlinear effects contribute to the
evolving pattern. Beyond ��1.0, the growing nanopillars
are within reach of the cooler substrate. The instances
marked �0, �1, and �top represent exactly those times indi-
cated in Figs. 4�a� and 5.

B. Numerical simulations of Lyapunov free energy

Numerical solutions of Eq. �19� confirm that nonlinear
effects for the parameter sets examined become significant
only when fluid elongations come into close proximity with
the cooler substrate. As evident in Fig. 6, the elongation rate
then exceeds exponential growth. In this regime, the nano-
pillars have grown a distance large in comparison to the ini-
tial film disturbance heights and the nonlinear terms in Eq.
�19� strongly influence the flow. To explore the energetics of
formation beyond the linear regime, we investigated the tem-
poral behavior of the Lyapunov free energy given by Eq.
�34�. Shown in Fig. 7 are solutions of the free energy F

=�LdXdY for a polystyrene nanofilm with ho=100 nm and
�T=46 °C for two different wafer separation distances, do

=285 and 800 nm. The termination points represent �top. The
individual contributions to the total free energy �denoted by
“sum”� from capillary and TC terms feature several impor-
tant points.

For ��1, the film experiences small deformations such
that the opposing capillary and TC contributions are also
small, neither significantly enhancing nor depleting energy
from the evolving film. Magnified views of the curves �not
shown� confirm a small but monotically decreasing value of
the free energy due to the still dominant influence of TC
stresses. This period of growth corresponds to the linear re-
gime described by linear stability analysis. Strong departure
from this behavior occurs for ��1 when nonlinear effects
begin to dominate. In this regime, the time �or distance� re-
maining for fluid contact with the top wafer is small and the
energetics of pillar formation strongly affected by the pres-
ence of the cooler target. For the smaller gap separation dis-
tance �do=285 nm� shown Fig. 7�a�, TC effects dominate
capillary effects as the nanopillars grow ever more rapidly
toward the cooler target. There remains sufficient fluid in the
residual film to continue feeding the growth of nanopillars
such that the system continuously lowers its overall free en-
ergy by transporting fluid toward the cooler substrate. Unlike
the equilibrium cellular convective patterns observed with
RB or BM instabilities, this nanofilm instability is non-
saturating and the free energy continues to decrease until the
fluid makes contact with the cooler target.

The results shown in Fig. 7�b� for the larger gap separa-
tion distance do=800 nm reveal different behavior. Since the
top substrate is positioned further away, the initial thermal
gradient is smaller and the films require correspondingly
longer times to develop substantial fluid elongations. The
linear to nonlinear transition is observed to occur at slightly
later times, ��1.2. The individual contributions to the free
energy are still clearly distinguishable but eventually asymp-
tote. The larger wafer separation distance allows for longer
growth periods, which causes significant film depletion near
the base of nanopillars. Fluid transfer needed to grow the
elongations is impeded, eventually halting their growth.
Fluid already contained within the nanopillars continues to
undergo a circulatory flow pattern, rising upwards near the
surface due to TC stresses and falling downwards near the
interior due to capillary stresses. However, fluid transfer
from the initial deposited film slows considerably and can be
halted completely if the depletion effect causes dryout.

In summary, the Lyapunov analysis demonstrates why
there is no steady state configuration in nanofilms except in
cases where film depletion leads to pillar isolation. This limit
can be achieved by placing the secondary plate sufficiently
far from the initial deposited film. In this case, nanopillars
that form will continue to undergo surface and interior flow
but they cannot grow substantially in height due to a limita-
tion in the available fluid mass needed to feed continued
growth and elongation.

ho = 100 nm
T = 46 oC

Capillary

Thermocapillary

Sum

do = 285 nm

(b)

(a)

ho = 100 nm
T = 46 oC

do = 800 nm

Capillary

Thermocapillary

Sum

FIG. 7. Numerical solutions of Lyapunov free energy, F���, given by Eq.
�34� for an initial flat film of thickness ho=100 nm and temperature differ-
ence �T=46 °C subject to two wafer separation distances: �a� do

=285 nm and �b� 800 nm.
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C. Influence of relative gap spacing and substrate tilt
on symmetry of evolving films

1. Effect of larger gap spacing

It is interesting to explore further the nonlinear behavior
shown in Fig. 6 for times ��1 by examining images of the
evolved films. The nonlinear regime is characterized by film
deformations that are no longer merely a linear superposition
of contributions with independent wave number. Instead, the
growth of individual peaks influences the growth of neigh-
boring peaks as determined from Eq. �19�. The evolving pil-
lars can, for example, reposition themselves along directions
that are energetically favorable in order to maximize the heat
flux through the air/liquid bilayer and in so doing, can influ-
ence the in-plane symmetry. This regime can be investigated
by holding all remaining parameters fixed while increasing
Do so as to allow the fluid elongations more time to grow
before contacting the cooler substrate. This is easily achieved
in the simulations by either increasing the actual plate sepa-
ration distance, do, or reducing the initial film thickness, ho.

Shown in Figs. 8�a� and 8�b� are two representations of
the film height H�X ,Y ,�=�top� for �T=46 °C and Do= �a�
3.45 and �b� 7.125. The inset figures depict the correspond-
ing FFTs, where the Fourier coefficients have been normal-
ized to their peak value and squared for filtering purposes.
The arrow shown has unit length and represents the value
Kmax

TC . Contact with the cooler plate is achieved at �top

�1.30 and 1.84, respectively. The Fourier transform of the
pattern �inset� for the smaller value of Do suggests quasihex-
agonal symmetry, with some pronounced harmonics in the
vicinity of the dominant peaks.

By contrast, the pattern for the larger value of Do clearly
shows well developed hexagonal symmetry. These patterns
indicate that the formation of hexagonal symmetry is corre-
lated with film depletion near the base of nanopillars. For
some parameter sets investigated, there is also evidence of a
bifurcation cascade, in which the region halfway in between
two adjacent nanopillars generates a parasitic protrusion
smaller in amplitude but similar in shape to the primary
nanopillars. This cascade behavior resembles the dynamics
reported in other thin film instabilities.49–51 For this cascade

to occur, the value of Do must be sufficiently large such that
the growth of the dominant nanopillars consumes a substan-
tial portion of the interstitial fluid mass.

In reviewing images of nanopillar formation in the lit-
erature, it is evident that hexagonal symmetry can occur with
even small values of Do, as shown in Fig. 1�d� for which
Do=1.63. If the pillars are allowed to grow well beyond the
time required for initial contact with the cooler substrate,
then the dynamics of growth by TC stresses will likely con-
tinue to draw liquid upwards, thereby thickening the diam-
eter of nanopillars which bridge the gap in between the two
substrates. This process will continue to remove film mate-
rial from the interstitial regions thereby generating condi-
tions favorable to the formation of hexagonal symmetry. In
such cases, the hexagonal symmetry is likely established
well after the fastest growing peaks make contact with the
cooler plate. The mechanism leading to this scenario, how-
ever, is not included in the model leading to Eq. �14�.

2. Effect of substrate tilt

As discussed in Sec. II B, the evolution equation for the
film height is modified according to Eq. �38� when the con-
fining substrates are subject to a relative tilt. Shown in Fig. 9
are the corresponding results for solutions of H�X ,Y ,�top� for
the case ho=100 nm, do=285 nm, and �T=46 °C subject
to increasing inclination angle. The image shown in Fig. 9�c�
corresponds to the inclination angle used in the experiments
of Schäffer et al.

As described in Sec. II B, the tilt of the upper substrate
was defined by the unit vector T� � = �1,1� /�2. The top right
corner in the images shown corresponds to the region of the
film with the smallest gap separation distance; likewise, the
bottom left corner represents the region with the largest gap

(a) (b)(b)

X

YY

X

FIG. 8. �Color online� Numerical solutions �top view� of the film thickness,
H�X ,Y ,�top�, from Eq. �19� for different gap ratios, Do=do /ho for �T
=46 °C: �a� ho=100 nm, Do=3.45, �top=1.30, and �b� ho=40 nm, Do

=7.125, �top=1.84. Inset images represent 2D Fourier transforms of corre-
sponding film heights viewed from above. Fourier coefficients were normal-
ized to the maximum value for each image and squared for improved filter-
ing. Unit arrows represent magnitude of most unstable wave number, Kmax

TC

=2	, derived from linear stability theory �see discussion following Eq.
�32��.

(a) (b)

(c) (d)

XX

Y

Y

Do

Do

Y

Y

tilt angle tan 2

tiltangle
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2

FIG. 9. Numerical solutions �top view� of the film thickness, H�X ,Y ,�top�,
from Eq. �38� for different inclination angles tan��̄� of the cooler substrate:
�a� tan��̄�=4.8�10−5 and �top=1.23, �b� tan��̄�=4.8�10−4 and �top=1.12,
�c� tan��̄�=4.8�10−3 and �top=0.86, �d� tan��̄�=4.8�10−2 and �top=0.47.
In all cases, ho=100 nm, do=285 nm, and �T=46 °C. Inclination angle
was imposed along the diagonal of the computational domain such that
tan��̄� /�2= ��D /�X�= ��D /�Y�. Schematic diagram indicates that upper right
corner �lower left corner� is subject to the smallest �largest� wafer separation
distance.
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distance. As such, a lateral thermal gradient is established
which draws fluid from the bottom left corner into the upper
right corner. To conserve mass in the simulations, fluid exit-
ing the top �bottom� boundary was simultaneously replaced
by fluid entering the right �left� boundary.

In all the experiments of Schäffer et al., the confining
substrates were subject to a relative tilt tan����1 �m /cm.
In rescaled units, tan��̄�=tan��� /� where �=ho /�max

TC . For the
experiments in which ho=100 nm, do=285 nm, and �T
=46 °C, �max

TC =4.8 �m �Eq. �27��, such that tan��̄�=4.8
�10−3. The corresponding tilt angle along the X and Y axes
for such experiments corresponds to a value of 4.8
�10−3 /�2�3.3�10−3, which should lead to the formations
observed in Fig. 9�c� if there were no other considerations or
artifacts.

As evident from the images �b�–�d�, the symmetry of the
evolving instability transitions from hexagonallike to square-
like symmetry due to the lateral bias in thermal gradient
established by the tilt of the cooler substrate. Even for very
small tilt angles, fluid is preferentially transported toward the
upper right corner where it accumulates in the form of ridges
along the top and right boundaries. This accumulation pro-
cess establishes secondary and tertiary parallel ridges spaced
apart roughly by a distance �max

TC . At longer times, these
ridges are observed to undergo breakup with a similar lateral
spacing. A relative tilt of the substrates therefore introduces a
strong lateral bias in thermal gradient which triggers pattern
formation along the domain boundaries instead of within the
interior, where the instability is generally more homoge-
neously distributed. This specific square symmetry observed
is therefore a direct consequence of using inclined substrates
within a square computational domain. Modification of the
computational domain shape may alter the symmetry ob-
served; however, the nanopillars will still nucleate along
cooler regions of the film. Additional studies of the Fourier
transforms of the images shown in Figs. 9�a�–9�d� �not
shown� confirm that the fastest growing wavelength, �max

TC ,
remains unaffected by very small tilt angles. In this respect,
the measurements of �max made by Schäffer et al. with a
tilted wafer geometry should not have affected comparison to
analytic predictions from linear stability theory for films con-
fined by parallel wafers. Given the strong influence of edge
behavior on the formation of emerging patterns, however,
care should be taken in experiment to ensure that no artifacts,
anomalies or asymmetries exist along the edges of a film
undergoing nanopillar formation if a particular array symme-
try is desirable.

V. CONCLUSION

In this work, we provide evidence that the spontaneous
formation of periodic pillar arrays in molten polymer nano-
films confined within closely spaced substrates maintained at
different temperatures is due to a TC instability. If not mass
limited, these pillars continue to grow until contact with the
cooler substrate is achieved. So long as the initial film thick-
ness and substrate separation distance are sufficiently small
that gravitational forces are negligible, there is no critical
number for onset of instability. In contrast with the conven-

tional BM instability, nanofilms are prone to formation of
elongations no matter how small the transverse thermal gra-
dient. Ultrasmall gradients, however, lead to large values of
the most unstable wavelength. In practice, very large pillar
spacings can be difficult to observe or difficult to distinguish
from defect mediated bumps which also undergo growth
from TC flow. The linear stability analysis shows that pillar
formations are expected in any viscous Newtonian-like nano-
film. Since the shear rates are characteristically small, it is
expected that molten materials of many kinds can be mod-
eled as a Newtonian fluid. Pillar arrays formed from poly-
mers like PS or PMMA are of commercial interest, however,
since they solidify rapidly in place once the thermal gradient
is removed due to their lower glass transition temperatures.

The analytic results obtained, including the energetics of
nanopillar formation as described by the Lyapunov func-
tional, confirm that elongations are caused by the predomi-
nance of TC stresses, which far outweigh stabilization by
capillary stresses during the later stages of development. The
increase in TC stresses leads to a rapid decrease in the over-
all free energy of the evolving film. Fourier analysis of the
emerging structures also indicates a preference for hexagonal
packing although true hexagonal order cannot be achieved if
the separation distance is too small since the pillars have
insufficient time to grow and self-organize before making
contact with the cooler target. Simulations for larger values
of Do=do /ho show well developed and long range hexagonal
order. The only limitation of the current analysis is the re-
striction to films of constant viscosity. While this approxima-
tion holds well for simple fluids, it is known that the viscos-
ity of polymer melts like PS and PMMA exhibit a strong
dependence on temperature. It is therefore expected that fluid
elongations undergo an increase in viscosity as the cooler
substrate is approached. We have examined this effect in
detail in a separate study52 and concluded that while this
cooling effect slows the growth of pillars, it does not affect
the pillar spacing in any appreciable way. This is expected
since the expression for the most unstable wavelength given
by Eq. �27� is independent of the melt viscosity.

The linear stability analysis of an initially flat viscous
film of thickness ho subject only to capillary and TC forces
reveals that the normalized gap spacing do /ho and tempera-
ture difference �T strongly affect the value of the most un-
stable wavelength, �max

TC . The pillar spacing or array pitch
scales as ��T�−1/2, which can therefore be tuned in experi-
ment. Direct comparison of �max

TC to experimental measure-
ments of Schäffer et al. reveals excellent agreement with the
functional dependence on do, namely �max

TC =C1do
1/2+C2do

−1/2.
The discrepancies observed are attributed to a number of
factors including solvent retention effects in unannealed
films and measurements of the array pitch in vitrified films
examined after the fluid had experienced prolonged contact
with the cooler substrate. A number of factors not included in
the model can influence the array pitch since the melt is no
longer growing in air but migrating and reorganizing along
the underside of the cooled wafer.

Linear stability analysis and numerical solutions of the
nonlinear evolution equation were also conducted for the
case of a tilted cooler substrate. Such a tilt initially estab-
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lishes both a lateral and vertical thermal gradient. In the ex-
periments of Schäffer et al., the tilt angle was less than
0.006°. Numerical simulations of the film height for even
very small tilt angles confirm that while the dominant wave-
length is unaffected, the in-plane symmetry of evolving elon-
gations can transition from hexagonal to squarelike. This
change is caused by TC influx of fluid into the smaller gap
region where the temperature of the film surface is cooler
due to proximity to the tilted substrate. The elongations in
this region also grow more rapidly since the effective ther-
mal gradient is larger. These results highlight the importance
of BCs in establishing the in-plane symmetry of arrays
formed as a result of TC instability in a tilted geometry. This
observation can also be used to advantage to generate large
area arrays of different symmetry.

In conclusion, the results presented here strongly suggest
that TC stresses play a crucial if not dominant role in the
formation of pillar arrays in molten nanofilms subject to a
transverse thermal gradient. According to the linear stability
analysis, nanoscale films for which the hydrostatic pressure
is completely negligible in comparison to capillary and TC
forces will promote fluid elongations no matter how small
the temperature difference between the top �cooler� and bot-
tom �warmer� substrates. Experiments using lower viscosity
melts, larger thermal gradients, smaller wafer separation dis-
tances, and smaller initial film thicknesses should generate
nanostructures with lateral feature sizes in the submicron
range. Such future studies will hopefully assist in the design
and manufacture of functional devices by exploiting the in-
herent regularity, smoothness and robustness of self-
organized patterns arising from instability.
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APPENDIX
To begin, Eq. �19� is re-expressed in terms of the param-

eter � such that

�H

��
= − �� · H3 �Ma

2DoH�1 + �H�2��H +
1

3Ca
��

3H� , �A1�

which is rearranged according to

�H

��
= − �� · H3	�Ma

2Do
 1

H
−

�

1 + �H
−

�

�1 + �H�2���H

+
1

3Ca
��

3H
 . �A2�

The term proportional to ��H is further simplified, where

 1

H
−

�

1 + �H
−

�

�1 + �H�2���H = ��	ln H

1 + �H
�

+
1

1 + �H

 . �A3�

By introducing the function  = ��Ma� / �2Do��ln�H / �1

+�H��+1 / �1+�H��+Co, the evolution equation can be re-
cast as

�H

��
= − �� · H3	�� +

1

3Ca
��

2H�
 , �A4�

where Co is a constant of integration. Equation �A4� is then

multiplied by the quantity  ̃= +��
2H / �3Ca� to give

 ̃
�H

��
= −  ̃�� · H3�� ̃ . �A5�

Since  = �H�, one can apply Leibnitz’s rule for differen-
tiation to find

�I

��
�

�

��
�

H��=0�

H���

 �S�dS = 
�H

��
, �A6�

where H��=0�=1, i.e., the initial film is flat and uniform.
Evaluation of the function I then gives

I =
�Ma

2Do
	H ln H

1 + �H
� + ln�1 + ��
 + C0�H − 1� .

�A7�

Equation �A5� is then integrated over the square domain
A� =�X�Y:

�
A�

 �I

��
+

1

3Ca
��

2H
�H

��
�dXdY = − �

A�

 ̃�� · H3�� ̃dXdY ,

�A8�

where  ̃�� · �H3�� ̃� can be re-expressed as �� · � ̃H3�� ̃�
−H3��� ̃�2. The first term on the right hand side vanishes for
a fixed domain subject to periodic BCs; the integral
�A�

��I /���dXdY can be rewritten as d /d��A�
IdXdY. These

simplifications can be used to recast Eq. �A8� into

d

d�
�

A�

I�H�dXdY +
1

3Ca
�

A�

��
2H

�H

��
dXdY

= �
A�

H3��� ̃�2dXdY . �A9�

A final integration by parts subject to periodic BCs simplifies
the second integral on the left hand side such that

�
A�

��
2H

�H

��
dXdY = −

1

2
�

A�

�

��
���H�2dXdY

= −
1

2

d

d�
�

A�

���H�2dXdY �A10�

Equation �A9� then simplifies to the form

d

d�
�

A�

	I −
1

6Ca
���H�2
dXdY = �

A�

H3��� ̃�2dXdY .

�A11�

Inserting Eq. �A7� into Eq. �A11� and noting that volume
conservation within the domain A� requires that �A�

�H
−1�dXdY =0 leads to
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d

d�
�

A�

��Ma

2Do
	H ln H

1 + �H
� + ln�1 + ��


−
1

6Ca
���H�2�dXdY = �

A�

H3��� ̃�2dXdY . �A12�

Multiplying Eq. �A12� by the quantity −6Ca produces the
final expression for the rate of change of F, namely

d

d�
�

A�

LdXdY = − 6Ca�
A�

H3��� ̃�2dXdY � 0, �A13�

where L is given by Eq. �34�. Since Eq. �A13� is a non-
negative quantity, the thin film seeks configurations of the
interface H in time which minimize F.
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