1,180 research outputs found

    Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation

    Full text link
    We investigate saturation effects in susceptible-infected-susceptible (SIS) models of the spread of epidemics in heterogeneous populations. The structure of interactions in the population is represented by networks with connectivity distribution P(k)P(k),including scale-free(SF) networks with power law distributions P(k)∼k−γP(k)\sim k^{-\gamma}. Considering cases where the transmission of infection between nodes depends on their connectivity, we introduce a saturation function C(k)C(k) which reduces the infection transmission rate λ\lambda across an edge going from a node with high connectivity kk. A mean field approximation with the neglect of degree-degree correlation then leads to a finite threshold λc>0\lambda_{c}>0 for SF networks with 2<γ≤32<\gamma \leq 3. We also find, in this approximation, the fraction of infected individuals among those with degree kk for λ\lambda close to λc\lambda_{c}. We investigate via computer simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained from mean field theory with and without neglect of degree-degree correlations.Comment: 6 figure

    Effects of aging and links removal on epidemic dynamics in scale-free networks

    Full text link
    We study the combined effects of aging and links removal on epidemic dynamics in the Barab\'{a}si-Albert scale-free networks. The epidemic is described by a susceptible-infected-refractory (SIR) model. The aging effect of a node introduced at time tit_{i} is described by an aging factor of the form (t−ti)−β(t-t_{i})^{-\beta} in the probability of being connected to newly added nodes in a growing network under the preferential attachment scheme based on popularity of the existing nodes. SIR dynamics is studied in networks with a fraction 1−p1-p of the links removed. Extensive numerical simulations reveal that there exists a threshold pcp_{c} such that for p≥pcp \geq p_{c}, epidemic breaks out in the network. For p<pcp < p_{c}, only a local spread results. The dependence of pcp_{c} on β\beta is studied in detail. The function pc(β)p_{c}(\beta) separates the space formed by β\beta and pp into regions corresponding to local and global spreads, respectively.Comment: 8 pages, 3 figures, revtex, corrected Ref.[11

    Immunization for complex network based on the effective degree of vertex

    Full text link
    The basic idea of many effective immunization strategies is first to rank the importance of vertices according to the degrees of vertices and then remove the vertices from highest importance to lowest until the network becomes disconnected. Here we define the effective degrees of vertex, i.e., the number of its connections linking to un-immunized nodes in current network during the immunization procedure, to rank the importance of vertex, and modify these strategies by using the effective degrees of vertices. Simulations on both the scale-free network models with various degree correlations and two real networks have revealed that the immunization strategies based on the effective degrees are often more effective than those based on the degrees in the initial network.Comment: 16 pages, 5 figure

    Population Dynamics in Spatially Heterogeneous Systems with Drift: the generalized contact process

    Full text link
    We investigate the time evolution and stationary states of a stochastic, spatially discrete, population model (contact process) with spatial heterogeneity and imposed drift (wind) in one- and two-dimensions. We consider in particular a situation in which space is divided into two regions: an oasis and a desert (low and high death rates). Carrying out computer simulations we find that the population in the (quasi) stationary state will be zero, localized, or delocalized, depending on the values of the drift and other parameters. The phase diagram is similar to that obtained by Nelson and coworkers from a deterministic, spatially continuous model of a bacterial population undergoing convection in a heterogeneous medium.Comment: 8 papes, 12 figure

    Epidemic threshold in structured scale-free networks

    Get PDF
    We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations, as found in the Internet graph. For the Suscetible-Infected-Susceptible model of epidemics the prevalence undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the absence of a finite threshold in networks with purely random wiring, our result suggests that high clustering and degree correlations protect scale-free networks against the spreading of viruses. We introduce and verify a quantitative description of the epidemic threshold based on the connectivity of the neighborhoods of the hubs.Comment: 4 pages, 4 figure

    A generic C1C^1 map has no absolutely continuous invariant probability measure

    Get PDF
    Let MM be a smooth compact manifold (maybe with boundary, maybe disconnected) of any dimension d≥1d \ge 1. We consider the set of C1C^1 maps f:M→Mf:M\to M which have no absolutely continuous (with respect to Lebesgue) invariant probability measure. We show that this is a residual (dense Gδ)setintheG_\delta) set in the C^1$ topology. In the course of the proof, we need a generalization of the usual Rokhlin tower lemma to non-invariant measures. That result may be of independent interest.Comment: 12 page

    Epidemics in Networks of Spatially Correlated Three-dimensional Root Branching Structures

    Full text link
    Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common 'SIR' epidemiological model onto the bond percolation problem, we show how the spatially-correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants, render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.Comment: 21 pages, 8 figure

    Complex population dynamics as a competition between multiple time-scale phenomena

    Full text link
    The role of the selection pressure and mutation amplitude on the behavior of a single-species population evolving on a two-dimensional lattice, in a periodically changing environment, is studied both analytically and numerically. The mean-field level of description allows to highlight the delicate interplay between the different time-scale processes in the resulting complex dynamics of the system. We clarify the influence of the amplitude and period of the environmental changes on the critical value of the selection pressure corresponding to a phase-transition "extinct-alive" of the population. However, the intrinsic stochasticity and the dynamically-built in correlations among the individuals, as well as the role of the mutation-induced variety in population's evolution are not appropriately accounted for. A more refined level of description, which is an individual-based one, has to be considered. The inherent fluctuations do not destroy the phase transition "extinct-alive", and the mutation amplitude is strongly influencing the value of the critical selection pressure. The phase diagram in the plane of the population's parameters -- selection and mutation is discussed as a function of the environmental variation characteristics. The differences between a smooth variation of the environment and an abrupt, catastrophic change are also addressesd.Comment: 15 pages, 12 figures. Accepted for publication in Phys. Rev.

    Oscillations in low-dimensional cyclic differential delay systems

    Get PDF
    Nonlinear autonomous N-dimensional systems of cyclic differential equations with delays and overall negative feedback are considered. Such systems serve as mathematical models of numerous real world phenomena in physics and laser optics, physiology and mathematical biology, economics and life sciences among others. In the case of lower dimensions and sufficient conditions are derived for the oscillation of all solutions about the unique equilibrium. Open problems and conjectures are discussed for the higher dimensional case and for more convoluted sign feedbacks. © 2018, Springer Nature Switzerland AG

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems
    • …
    corecore