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Oscillations in Low-Dimensional Cyclic
Differential Delay Systems

Anatoli F. Ivanov and Zari A. Dzalilov

Abstract Nonlinear autonomous N-dimensional systems of cyclic differential equa-
tions with delays and overall negative feedback are considered. Such systems serve
as mathematical models of numerous real world phenomena in physics and laser
optics, physiology and mathematical biology, economics and life sciences among
others. In the case of lower dimensions N = 2 and N = 3 sufficient conditions are
derived for the oscillation of all solutions about the unique equilibrium. Open prob-
lems and conjectures are discussed for the higher dimensional case N ≥ 4 and for
more convoluted sign feedbacks.

1 Introduction

We consider a system of delay differential equations of the form

x′i(t) =−αixi(t)+ fi(xi+1(t− τi+1)), 1≤ i≤ N, (1)

where the functions fi(u) are real-valued and continuous on R, fi ∈ C(R,R), the
decay rates αi > 0 are positive, and the delays τi are non-negative with the total
delay τ = ∑

N
i=1 τi > 0 being positive. The system is a cyclic one with the variables

xN+1 and τN+1 defined as x1 and τ1, respectively, for the index value i = N.
Systems of form (1) are used in various applications, including physics and laser

optics, physiology and mathematical biology, economics and life sciences among
others. In particular, they naturally appear in physiology and mathematical biology
[5, 7, 9, 10, 14], where they serve as models of enzyme production [6, 11] or of an
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intracellular circadian rhythm generator [12]. An extensive description of various
applications can be found in e.g. [4, 5, 13, 14].

The problem of oscillatory behavior of all solutions in systems of type (1) is a
very important one. From the applied point of view, when a system is a mathematical
model of a real world phenomenon, it is essential to know whether solutions are
monotone (and thus approaching an equilibrium) or they oscillate about the unique
equilibrium. The oscillatory behavior is more typical in applied models; it also leads,
under proper circumstances, to the existence of periodic motions in the model.

This work is devoted to derivation of sufficient conditions when all solutions of
system (1) oscillate. Two partial cases of lower dimension N = 2 and N = 3 are
studied.

2 Preliminaries

In this section we recall some basic notions and facts about system (1), introduce
relevant definitions, and derive preliminary results necessary for the exposition and
proof of our main results in Section 3.

The phase space of system (1) is the set X=C([−τ1,0],R)× . . .×C([−τN ,0],R).
For every initial function Φ = (φ1, . . . ,φN) ∈X,φi ∈C([−τi,0],R),1≤ i≤ N, there
exists a unique solution x = x(t) = x(t,Φ) = (x1(t), . . . ,xN(t)) satisfying system (1)
for all t > 0. The solution is built by the standard step-by-step integration procedure
[1, 3, 8].

We also assume that each nonlinearity fi satisfies either the positive or negative
feedback condition in the sense of the following definition.

Definition 1. We say that function f (u) satisfies the positive feedback condition on
R if the following inequality holds

u · f (u)> 0 for all u ∈ R, u 6= 0. (2)

Likewise, function g(u) satisfies the negative feedback condition if the inequality
holds

u ·g(u)< 0 for all u ∈ R, u 6= 0. (3)

When i = N we set i+1 = 1. If the number of nonlinearities in system (1) satisfying
the negative feedback assumption (3) is odd we say that the system possesses the
overall negative feedback. If it is even (including zero) the system is said to have the
overall positive feedback.

It is easy to see that the sign assumptions (2) and (3) together with the continuity
of fi imply that fi(0) = 0,1≤ i≤ N. Therefore, system (1) admits the only constant
solution 0 = (0, . . . ,0).

We shall make an additional assumption about the smoothness of functions fi
in a neighborhood of zero: each fi is continuously differentiable for all u such that
|u| ≤ δ for some δ > 0. Their derivatives satisfy f ′i (0) = ai 6= 0,1 ≤ i ≤ N. The
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latter inequality describes a generic case for the nonlinearities fi around the zero
equilibrium.

Note that system (1) can be reduced to a standard form where each of the nonlin-
earities fi,1≤ i≤ N−1, satisfies the positive feedback condition (2), while the last
nonlinearity fN satisfies the negative feedback assumption (3) [2]. Indeed, assume
that the k-th equation, k < N,

x′k(t) =−αkxk(t)+ fk(xk+1(t− τk+1))

is the first one in system (1) where the nonlinearity fk satisfies the negative feedback
condition (3). Introduce then the new component yk+1 =:−xk+1 and the new nonlin-
earity f̂k(yk+1) = fk(−yk+1). One easily sees that f̂k satisfies the positive feedback
condition. The next (k + 1)-st equation of system (1) should also be rewritten in
terms of the new yk+1:

y′k+1(t) = −αk+1yk+1(t)− fk+1(xk+2(t− τk+2))

= −αk+1yk+1(t)+ f̂k+1(xk+2(t− τk+2)).

If f̂k+1,k + 1 < N, satisfies the negative feedback condition, then one applies the
same procedure of introducing the new variable yk+2 =−xk+2 to this equation, and
renaming the nonlinearity accordingly. If it satisfies the positive feedback condition
then one moves to the next equation of the system, and so on until the last equa-
tion. The last N-th equation will satisfy the negative feedback assumption since the
overall feedback in the system is negative.

Definition 2. Let x = (x1, . . . ,xN) be a solution to system (1). We shall call its k-th
component xk to be oscillatory (about zero) if there exists a sequence tn→∞,n ∈N,
such that xk(tn) · xk(tn+1) < 0. The component xk will be called non-oscillatory if
there exists T ≥ 0 such that |xk(t)|> 0 for all t > T. We exclude from consideration
solutions which are identical zero for sufficiently large t: x = (0, . . . ,0) ∀t ≥ T for
some T ≥ 0.

Lemma 1. Let x = (x1, . . . ,xN) be an arbitrary solution to system (1).
(i) If its k-th component xk is oscillatory then any other component xi, i 6= k, is

oscillatory as well;
(ii) If its k-th component xk is non-oscillatory, so that xk(t)≥ 0 or xk(t)≤ 0 holds

for all t ≥ T1 ≥ 0, then there exists T2 ≥ T1 such that xk(t) > 0 or xk(t) < 0 holds
respectively for all t ≥ T2;

(iii) If its k-th component xk is of eventually definite sign, i.e. xk(t)> 0 or xk(t)<
0 for all t > T and some T ≥ 0, then any other component xi, i 6= k, is also of
eventually definite sign;

(iv) Every component xk of any non-oscillatory solution x satisfies

lim
t→∞

xk(t) = lim
t→∞

x′k(t) = 0, 1≤ k ≤ N. (4)

In order to prove Lemma 1 we need several simple facts about solutions of initial
value problems for scalar first order ordinary differential equations.
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Proposition 1. Consider the initial value problem

u′(t)+αu(t) = b(t), u(t0) = u0, t ≥ t0, (5)

where α > 0 is a constant and b(t) is a continuous real-valued function defined for
t ≥ t0, b ∈C([t0,∞),R), with b(t) 6≡ 0 for large values of t.

(i) If u0 ≥ 0 and b(t)≥ 0 for all t ≥ t0 then there exists t1 ≥ t0 such that u(t)> 0
for all t ≥ t1. If u0 ≤ 0 and b(t) ≤ 0 for all t ≥ t0 then there exists t2 ≥ t0 such that
u(t)< 0 for all t ≥ t2;

(ii) If u0 < 0 and b(t)≥ 0 for all t ≥ t0 then either u(t)< 0 for all t ≥ t0, or there
exists t1 ≥ t0 such that u(t1) = 0. Likewise, if u0 > 0 and b(t)≤ 0 for all t ≥ t0 then
either u(t) > 0 for all t ≥ t0, or there exists t1 ≥ t0 such that u(t1) = 0. For either
one of these two possibilities the solution u(t) is of definite sign eventually (for all
t ≥ T ≥ t0 and some T ).

Proof. The proof of this proposition easily follows from the integral representation
of the solution of the initial value problem (5):

u(t) = u0 exp{−α(t− t0)}+
∫ t

t0
exp{−α(t− s)}b(s)ds. (6)

It is easily seen that when u0 > 0 and b(t)≥ 0 then u(t)> 0 ∀t ≥ t0. When u0 = 0 and
b(t) ≥ 0 (however, b(t) 6≡ 0) then there exists point t1 ≥ t0 such that u(t) > 0 ∀t ≥
t1 (since the integral value in (6) becomes positive for all large t). The remaining
possibilities are considered analogously.

Proposition 2. Consider the initial value problem

βv′(t)+ v(t) = c(t), v(t0) = v0, t ≥ t0, (7)

where β > 0 and c(t) is a continuous function, c ∈C([t0,∞),R), such that the limit
limt→∞ c(t) = c0 is finite. Then the solution v(t) of the initial value problem (7) also
has the same limit limt→∞ v(t) = c0 (for any initial value v0 ∈ R and any positive
parameter value β > 0).

Proof. To prove the limit for any solution we shall show that for arbitrary ε > 0 there
exists tε ≥ t0 such that the solution v(t) satisfies the inclusion v(t) ∈ [c0− ε,c0 + ε]
for all t ≥ tε .

We shall show first that if a solution enters a sufficiently small neighborhood
of value c then it must stay there for all forward times. That is if the above claim
about the solution v(t) is not valid for a particular choice of β > 0,v0 ∈ R, and a
sufficiently small ε0 > 0 then the solution v(t) must satisfy v(t) 6∈ [c0− ε0,c0 + ε0]
for all t ≥ T1 ≥ t0 for some T1. Indeed, given ε0 > 0 one can choose T1 large enough
such that the inclusion c(t) ∈ (c0− ε0,c0 + ε0) holds for all t ≥ T1. If there exists
a point t1 ≥ T1 such that v(t1) ∈ [c0− ε0,c0 + ε0] then v(t) ∈ [c0− ε0,c0 + ε0] must
hold for all t ≥ t1. Indeed, assume that t2 ≥ t1 is the first point of exit of the solution
v(t) from the interval [c0− ε0,c0 + ε0]. To be definite, assume that v(t2) = c0 + ε0,
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and v(t)> c0+ε0 for all t ∈ (t2, t2+δ ) for some δ > 0. Then the interval (t2, t2+δ )
also contains a point t3 such that v(t3) > c0 + ε0 and v′(t3) > 0. On the other hand,
according to the equation, v′(t3) = 1

β
[c(t3)− v(t3)] < 0, a contradiction. The other

possibility v(t2) = c0− ε0 leads to a contradiction in a similar way.
Therefore, we can assume next that there exists T2 ≥ t0 such that c(t) ∈ [c0−

ε0,c0 + ε0] and v(t) 6∈ [c0− ε0,c0 + ε0] for all t ≥ T2. To be definite, assume that
v(t) > c0 + ε0 ∀t ≥ T2. Equation (7) then implies that βv′(t) = c(t)− v(t) < 0 for
t ≥ T2, therefore the solution v(t) is monotone decreasing. Set v0 = limt→∞ v(t) ≥
c0+ε0. By using the limit values for functions c(t) and v(t) the last inequality yields

βv′(t) = c(t)− v(t)< c0 +σ − (v0−σ) = c0− v0 +2σ < 0

for any sufficiently small σ > 0 and all t ≥ tσ for some large tσ . The latter implies
that limt→∞ v(t) = −∞, a contradiction with v(t)→ v0 ≥ c0 + ε0. The other possi-
bility v(t) < c0− ε0 ∀t ≥ T2 is treated analogously leading to a contradiction in a
similar way. This completes the proof of the proposition.

Note that Proposition 2 can also be proved by using the variation of constant formula
for the solution of the initial value problem (7).

Now we are in position to prove Lemma 1.

Proof. We shall prove first that when a solution x = (x1, . . . ,xN) to system (1) is
non-oscillatory, so either xk(t) ≥ 0 or xk(t) ≤ 0 holds for all t ≥ T1 and some k ∈
{1,2, . . . ,N}, then there exists T2 ≥ T1 such that in fact the strict inequalities hold:
either xk(t) > 0 or xk(t) < 0 for all t ≥ T2. Besides, for every other component
xi, i 6= k, there exists time moment si such that either xi(t)> 0 or xi(t)< 0 holds for
all t ≥ si.

To be definite, assume that x1(t)≥ 0 ∀t ≥ T1 and x1(t) 6≡ 0 (other possibilities are
considered similarly). Then the inequality fN(x1(t−τ1))≤ 0 (and 6≡ 0) holds for all
large t. The last equation of system (1) can be represented in the integral form as
follows

xN(t) = xN(t0)exp{−αN(t− t0)}+
∫ t

t0
exp{−αN(t− s)} fN(x1(s− τ1))ds. (8)

One applies now Proposition 1 to conclude that either xN(t)> 0 or xN(t)< 0 holds
eventually, since the kernel of the integral in the representation (8) is non-positive
and is not identical zero eventually. Note that similarly to 8 any other equation of
system (1) has its integral representation as follows

xk(t) = xk(t0)exp{−αk(t− t0)}+
∫ t

t0
exp{−αk(t− s)} fk(xk+1(s− τk+1))ds. (9)

Using next the (N− 1)-st equation of the system, and its analogous representation
in a form of integral equation (9) one finds that either xN−1(t) > 0 or xN−1(t) < 0
holds eventually. Going up along equations of system (1) one completes the proof
of the claim for all the components xk,1≤ k ≤ N.
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We shall show next that all the components xi,1 ≤ i ≤ N, of the non-oscillatory
solution x = (x1, . . . ,xN) converge to zero together with their derivatives. To be defi-
nite assume that x1(t)> 0 ∀t ≥ t0. Consider the last equation of system (1). Suppose
first that xN(t)> 0 holds for all t ≥ tN . Then x′N(t) =−αNxN(t)+ fN(x1(t−τ1))< 0
is satisfied for all large t. Therefore, the finite limit limt→∞ xN(t) = x0

N ≥ 0 exists. By
using the second from the last equation of system (1), x′N−1(t) = −αN−1xN−1(t)+
fN−1(xN(t − τN)), its integral representation in the form of (9), and Proposition
2, one sees that the limit of the component xN−1(t) exists with limt→∞ xN−1(t) =
fN(x0

N) =: x0
N−1. Likewise, limt→∞ xN−2(t) = fN−2(x0

N−1) =: x0
N−2, and finally the

limit of the first component is limt→∞ x1(t)= f2(x0
2)=: x0

1. Using again the last equa-
tion of system (1) and Proposition 2 one finds that limt→∞ xN(t) = fN(x0

1) =: x0
N .

Therefore, the constant x0
N satisfies the recursive equation

x0
N = fN(x0

1) = fN ◦ f1(x0
2) = . . .= fN ◦ f1 ◦ . . .◦ fN−1(x0

N).

Since function F(u) = fN ◦ f1 ◦ . . . ◦ fN−1(u) satisfies the negative feedback con-
dition (3) the only solution of the equation F(u) = u is u = 0. Therefore, x0

1 =
x0

2 = . . . = x0
N = 0. Also, one easily finds that limt→∞ x′k(t) = limt→∞[−αkxk(t)+

fk(xk+1(t− τk+1))] = 0. This completes the proof of the lemma.

3 Main Results

In this section we consider two particular cases of system (1) when N = 2 and N = 3.
We establish sufficient conditions for the oscillatory behavior of all solutions in the
system. The complete proof is provided for the case N = 2. The very same ideas for
the proof are applicable for the three-dimensional systems, however, an outline is
only given for the more involved case N = 3, due to the length of considerations.

3.1 Two Dimensional Systems

Consider the two-dimensional case N = 2 of system (1)

x′1(t) = −α1x1(t)+ f1(x2(t− τ2))

x′2(t) = −α2x2(t)+ f2(x1(t− τ1)). (10)

Since it is in the standard form f1 satisfies the positive feedback assumption (2)
while f2 satisfies the negative feedback assumption (3). Introduce the following
quantities: a = a1 ·a2 > 0,τ1 +τ2 = τ > 0, where f ′1(0) = a1 > 0, f ′2(0) =−a2 < 0.

Theorem 1. Suppose that the inequality aτ > max{α1,α2} is satisfied. Then all
nontrivial solutions of system (10) oscillate.
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Proof. Consider consecutively all the possibilities for non-oscillatory solutions of
system (10).

(i) Assume first that inequalities x1(t) > 0 and x2(t) > 0 hold eventually. Then
by Lemma 1 (iv) one has that

lim
t→∞

x1(t) = lim
t→∞

x2(t) = lim
t→∞

x′1(t) = lim
t→∞

x′2(t) = 0. (11)

The second equation of system (10) shows that x′2(t) < 0 eventually, so x2(t) is
monotone decreasing to zero for large t. The first equation of (10) can be written
in the form (1/α1)x′1(t) = −x1(t) + (1/α1) f1(x2(t − τ2)). Since (1/α1) f1(x2(t −
τ2)) > 0 and is decreasing to zero as x2 → 0+ one sees that the inequality x1(t) ≤
(1/α1) f1(x2(t− τ2)) holds for all sufficiently large t.

Assume now that for arbitrary ε1 > 0 and ε2 > 0 the values of t are chosen to be
large enough, t ≥ T , so that the following inequalities hold:

f2(x1(t−τ1))≤
[

f ′2(0)+ ε1
]

x1(t−τ1)and f1(x2(t−τ2))≥
[

f ′1(0)− ε2
]

x2(t−τ2).

Integrate now the second equation of system (10) over the interval [t− τ, t]:

x2(t)− x2(t− τ) = −α2

∫ t

t−τ

x2(s)ds+
∫ t

t−τ

f2(x1(s− τ1)ds≤

− α2x2(t)τ +
[

f ′2(0)+ ε1
]∫ t

t−τ

x1(s− τ1)ds≤

− α2x2(t)τ +
[

f ′2(0)+ ε1
] 1

α 1

∫ t

t−τ

f1(x2(s− τ))ds≤

− α2x2(t)τ +
τ

α1

[
f ′2(0)+ ε1

][
f ′1(0)− ε2

]
x2(t− τ)).

Therefore, we obtain the inequality

x2(t) [1+α2τ]≤ x2(t− τ)

{
1+

τ

α1

[
f ′2(0)+ ε1

][
f ′1(0)− ε2

]}
.

In the case when 1+ τ

α1
[ f ′2(0)+ ε1][ f ′1(0)− ε2] < 0 is satisfied we arrive at a con-

tradiction with x2(t)> 0. This will clearly be the case when the inequality τa > α1
is satisfied and ε1,ε2 are sufficiently small.

(ii) Assume next that inequalities x1(t)> 0 and x2(t)< 0 are satisfied eventually.
As in part (i) one has the limits (11). The first equation of system (10) shows that
x′1(t)< 0 so x1(t) is decreasing to zero. The second equation of the system implies
that x′2(t) > 0 eventually, so x2(t) is increasing with x2(t) ≤ (1/α2) f2(x1(t − τ1))
satisfied for all large t. Now integrate the first equation of the system over the inter-
val [t− τ, t], assuming similar smallness of ε1,ε2 as in part (i) above:

x1(t)− x1(t− τ) = −α1

∫ t

t−τ

x1(s)ds+
∫ t

t−τ

f1(x2(s− τ2)ds≤
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− α1τx1(t)ds+
∫ t

t−τ

[ f ′1(0)− ε1]x2(s− τ2)ds≤

− α1τx1(t)ds+
[

f ′1(0)− ε1
]∫ t

t−τ

(1/α2) f2(x1(s− τ))ds≤

− α1τx1(t)ds+
1
α 2

[
f ′1(0)− ε1

][
f ′2(0)+ ε2

]∫ t

t−τ

x1(s− τ)ds≤

− α1τx1(t)ds+
τ

α 2

[
f ′1(0)− ε1

][
f ′2(0)+ ε2

]
x1(t− τ).

The last inequality implies that the following estimate holds

x1(t) [1+α1τ]≤ x1(t− τ)

{
1+

τ

α2

[
f ′1(0)− ε1

][
f ′2(0)+ ε2

]}
.

Therefore when the condition aτ > α2 is satisfied the latest inequality leads to a
contradiction with x1(t)> 0.

(iii) Two remaining subcases, {x1(t) < 0,x2(t) < 0} and {x1(t) < 0,x2(t) > 0}
are symmetric to those treated above in cases (i) and (ii), respectively. The details
of the proof are derived along the same lines, with a contradiction obtained to the
assumption that x1(t)< 0. They are left to the reader.

3.2 Three Dimensional Systems

Consider the three-dimensional case N = 3 of system (1)

x′1(t) =−α1x1(t)+ f1(x2(t− τ2))

x′2(t) =−α2x2(t)+ f2(x3(t− τ3)) (12)
x′3(t) =−α3x1(t)+ f3(x1(t− τ1)).

Since it is in the standard form f1 and f2 satisfy the positive feedback assumption
(2) while f3 satisfies the negative feedback assumption (3). Introduce the following
quantities: a = a1a2a3 > 0,τ1+τ2+τ3 = τ > 0 where f ′1(0) = a1 > 0, f ′2(0) = a2 >
0, f ′3(0) =−a3 < 0.

Theorem 2. Suppose that the inequality aτ > max{α1α2,α1α3,α2α3} is satisfied.
Then all nontrivial solutions of system (10) oscillate.

Proof. The proof of this theorem in very similar to that of Theorem 1. One has
to consider the following three principal subcases for the eventual signs of the
components x1,x2,x3 of a non-oscillating solution x: {x1 > 0,x2 > 0,x3 > 0},
{x1 > 0,x2 > 0,x3 < 0}, and {x1 > 0,x2 < 0,x3 < 0}. The remaining five subcases
are symmetric opposite or similar to those three, and are considered along the same
lines. For example, the case {x1 > 0,x2 > 0,x3 > 0} leads to the following integral
equation for the component x3, when the last equation of the system is integrated
over the interval [t− τ, t],
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x3(t)− x3(t− τ) =−α3

∫ t

t−τ

x3(s)ds+
∫ t

t−τ

f3(x1(s− τ1)ds,

and to the following two inequalities for the components x1 and x2

x1(t)≥
1

α1
f1(x2(t− τ2)), x2(t)≥

1
α2

f2(x3(t− τ3)).

Substituting the latter into the former, one derives a contradiction with the assump-
tion x3(t) > 0, when the inequality τa > α1α2 is satisfied. The other two principal
subcases lead to a similar contradiction when the other two assumptions are in place,
τa > α1α3 and τa > α2α3. We leave details to the reader.

4 Discussion

Theorems 1 and 2 provide simple and verifiable sufficient conditions for the oscil-
lation of all solutions of system (1) in cases N = 2 and N = 3. In the case when the
feedback functions f1, f2, f3 are fixed, and the rates of decay of all the components
are bounded above, maxi αi ≤ α0 for some fixed constant α0 > 0, a sufficiently large
overall delay τ = ∑

N
i=0 in the system forces all its solutions to oscillate. We believe

that an analogue of these two theorems is valid in the case of general dimension N.
However, we are not in a position to provide a complete proof at this time. The ideas
used in the proof of Theorems 1 and 2 cannot be extended to the case N ≥ 4, due to
the variety and complexity of all the subcases. Therefore, we are only in a position
to state the following conjecture.

Set a = −a1a2 . . .aN−1aN > 0 and τ = τ1 + . . .+ τN > 0, where f ′i (0) = ai >
0,1 ≤ i ≤ N− 1 and f ′N(0) = aN < 0. Given positive α1, . . . ,αN introduce the fol-
lowing quantities: Λi = ∏k 6=i αk,1≤ i≤ N.

Conjecture 1. Suppose that the inequality aτ > max{ Λ1, . . . ,ΛN} is satisfied. Then
all nontrivial solutions of system (1) oscillate.

Another interesting and challenging problem is to derive sufficient conditions for
the oscillation of all solutions in cyclic type systems when either a positive or a
negative type feedback is in place between any two consecutive components xk and
xk+1, however, all other components are also involved on every step. In the simplest
case of dimension N = 2 such system would have the form

x′1(t) =−α1x1(t)+ f1(x1(t− τ1),x2(t− τ2))

x′2(t) =−α2x2(t)+ f2(x1(t− τ1),x2(t− τ2)),

where the nonlinearities f1 and f2 satisfy the positive and negative feedback as-
sumptions, respectively, in the following sense:

v · f1(u,v)> 0 ∀(u,v) ∈ R2,v 6= 0 u · f2(u,v)< 0 ∀(u,v) ∈ R2,u 6= 0.
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This problem can be generalized to the case of arbitrary dimension N. This oscilla-
tion problem and the above conjectured Conjecture 1 represent a program for future
research.
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