10,023 research outputs found

    The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster

    Get PDF
    It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight

    Genome editing in non-model organisms opens new horizons for comparative physiology

    Get PDF
    For almost 100 years, biologists have made fundamental discoveries using a handful of model organisms that are not representative of the rich diversity found in nature. The advent of CRISPR genome editing now opens up a wide range of new organisms to mechanistic investigation. This increases not only the taxonomic breadth of current research but also the scope of biological problems that are now amenable to study, such as population control of invasive species, management of disease vectors such as mosquitoes, the creation of chimeric animal hosts to grow human organs and even the possibility of resurrecting extinct species such as passenger pigeons and mammoths. Beyond these practical applications, work on non-model organisms enriches our basic understanding of the natural world. This special issue addresses a broad spectrum of biological problems in non-model organisms and highlights the utility of genome editing across levels of complexity from development and physiology to behaviour and evolution

    Character Selection During Interactive Taxonomic Identification: “Best Characters”

    Get PDF
    Software interfaces for interactive multiple-entry taxonomic identification (polyclaves) sometimes provide a “best character” or “separation” coefficient, to guide the user to choose a character that could most effectively reduce the number of identification steps required. The coefficient could be particularly helpful when difficult or expensive tasks are needed for forensic identification, and in very large databases, uses that appear likely to increase in importance. Several current systems also provide tools to develop taxonomies or single-entry identification keys, with a variety of coefficients that are appropriate to that purpose. For the identification task, however, information theory neatly applies, and provides the most appropriate coefficient. To our knowledge, Delta-Intkey is the only currently available system that uses a coefficient related to information theory, and it is currently being reimplemented, which may allow for improvement. We describe two improvements to the algorithm used by Delta-Intkey. The first improves transparency as the number of remaining taxa decreases, by normalizing the range of the coefficient to [0,1]. The second concerns numeric ranges, which require consistent treatment of sub-intervals and their end-points. A stand-alone Bestchar program for categorical data is provided, in the Python and R languages. The source code is freely available and dedicated to the Public Domain

    Towards a standardised line list for G191-B2B, and other DA type objects

    Get PDF
    We present a comprehensive analysis of the far UV spectrum of G191-B2B over the range of 900-1700{\AA} using co-added data from the FUSE and STIS archives. While previous identifications made by Holberg et al. (2003) are reaffirmed in this work, it is found that many previously unidentified lines can now be attributed to Fe, Ni, and a few lighter metals. Future work includes extending this detailed analysis to a wider range of DA objects, in the expectation that a more complete analysis of their atmospheres can be realised.Comment: 4 pages, 2 figures, 1 table: To appear in the proceedings of the "18th European White Dwarf Workshop" in Krakow, Poland, 201

    The joint large-scale foreground-CMB posteriors of the 3-year WMAP data

    Full text link
    Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrumental noise, a single power law foreground component with free amplitude and spectral index for each pixel, a thermal dust template with a single free overall amplitude, and free monopoles and dipoles at each frequency. This simple model yields a surprisingly good fit to the data over the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB sky signal and power spectrum, and a new foreground model, including a measurement of the effective spectral index over the high-latitude sky. A particularly significant result is the detection of a common spurious offset in all frequency bands of ~ -13muK, as well as a dipole in the V-band data. Correcting for these is essential when determining the effective spectral index of the foregrounds. We find that our new foreground model is in good agreement with template-based model presented by the WMAP team, but not with their MEM reconstruction. We believe the latter may be at least partially compromised by the residual offsets and dipoles in the data. Fortunately, the CMB power spectrum is not significantly affected by these issues, as our new spectrum is in excellent agreement with that published by the WMAP team. The corresponding cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available at http://www.astro.uio.no/~hke under the Research ta

    ALMA observations of 99 GHz free-free and H40α\alpha line emission from star formation in the centre of NGC 253

    Full text link
    We present Atacama Large Millimeter/submillimeter Array observations of 99.02 GHz free-free and H40α\alpha emission from the centre of the nearby starburst galaxy NGC 253. We calculate electron temperatures of 3700-4500 K for the photoionized gas, which agrees with previous measurements. We measure a photoionizing photon production rate of (3.2±0.2)×1053(3.2\pm0.2)\times10^{53} s−1^{-1} and a star formation rate of 1.73±0.121.73\pm0.12 M⊙_\odot yr−1^{-1} within the central 20×\times10 arcsec, which fall within the broad range of measurements from previous millimetre and radio observations but which are better constrained. We also demonstrate that the dust opacities are ~3 dex higher than inferred from previous near-infrared data, which illustrates the benefits of using millimetre star formation tracers in very dusty sources.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field

    Full text link
    The Hubble Deep Field (HDF) is the deepest set of multicolor optical photometric observations ever undertaken, and offers a valuable data set with which to study galaxy evolution. Combining the optical WFPC2 data with ground-based near-infrared photometry, we derive photometrically estimated redshifts for HDF galaxies with J<23.5. We demonstrate that incorporating the near-infrared data reduces the uncertainty in the estimated redshifts by approximately 40% and is required to remove systematic uncertainties within the redshift range 1<z<2. Utilizing these photometric redshifts, we determine the evolution of the comoving ultraviolet (2800 A) luminosity density (presumed to be proportional to the global star formation rate) from a redshift of z=0.5 to z=2. We find that the global star formation rate increases rapidly with redshift, rising by a factor of 12 from a redshift of zero to a peak at z~1.5. For redshifts beyond 1.5, it decreases monotonically. Our measures of the star formation rate are consistent with those found by Lilly et al. (1996) from the CFRS at z 2, and bridge the redshift gap between those two samples. The overall star formation or metal enrichment rate history is consistent with the predictions of Pei and Fall (1995) based on the evolving HI content of Lyman-alpha QSO absorption line systems.Comment: Latex format, 10 pages, 3 postscript figures. Accepted for publication in Ap J Letter
    • 

    corecore