108 research outputs found

    Haemostatic and fibrinolytic changes in obese subjects undergoing bariatric surgery: the effect of different surgical procedures.

    Get PDF
    Background Little is known about effects of different bariatric surgery procedures on haemostatic and fibrinolytic parameters. Material and methods Consecutive obese subjects undergoing gastric bypass (GBP) or sleeve gastrectomy (SG) were enrolled. In all patients, levels of haemostatic factors (FII, FVII, FVIII, FIX, FX, vWF, fibrinogen), fibrinolytic variables (PAI-1, t-PA and D-dimer) and natural anticoagulants (AT, protein C and protein S) were evaluated before and 2 months after surgery. Results A total of 77 GBP and 79 SG subjects completed the study. At baseline no difference in coagulation parameters was found between the two groups. After both GBP and SG, subjects showed significant changes in haemostatic and fibrinolytic variables and in natural anticoagulant levels. The Δ% changes in FVII, FVIII, FIX, vWF, fibrinogen, D-dimer, protein C and protein S levels were significantly higher in subjects who underwent GBP than in those who underwent SG. Multivariate analysis confirmed that GBP was a predictor of higher Δ% changes in FVII (ÎČ=0.268, p=0.010), protein C (ÎČ=0.274, p=0.003) and protein S (ÎČ=0.297, p<0.001), but not in all the other variables. Following coagulation factor reduction, 31 subjects (25.9% of GBP and 13.9% of SG; p=0.044) showed overt FVII deficiency; protein C deficiency was reported by 34 subjects (32.5% of GBP vs 11.4% of SG, p=0.033) and protein S deficiency by 39 (37.6% of GBP vs 12.6% of SG, p=0.009). Multivariate analyses showed that GBP was associated with an increased risk of deficiency of FVII (OR: 3.64; 95% CI: 1.73–7.64, p=0.001), protein C (OR: 4.319; 95% CI: 1.33–13.9, p=0.015) and protein S (OR: 5.50; 95% CI: 1.71–17.7, p=0.004). Discussion GBP is associated with an increased risk of post-operative deficiency in some vitamin K-dependent coagulation factors. Whereas such deficiency is too weak to cause bleeding, it is significant enough to increase the risk of thrombosis

    8-Hydroxy-2-Deoxyguanosine Levels and Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Significance: 8-Hydroxy-2-deoxyguanosine (8-OHdG) is generated after the repair of ROS-mediated DNA damages and, thus, is one of the most widely recognized biomarkers of oxidative damage of DNA because guanosine is the most oxidized among the DNA nucleobases. In several pathological conditions, high urinary levels of oxidized DNA-derived metabolites have been reported (e.g., cancer, atherosclerosis, hypertension, and diabetes). Recent Advances: Even if published studies have shown that DNA damage is significantly associated with the development of atherosclerosis, the exact role of this damage in the onset and progression of this pathology is not fully understood, and the association of oxidative damage to DNA with cardiovascular disease (CVD) still needs to be more extensively investigated. We performed a meta-analysis of the literature to investigate the association among 8-OHdG levels and CVD. Critical Issues: Fourteen studies (810 CVD patients and 1106 controls) were included in the analysis. We found that CVD patients showed higher 8-OHdG levels than controls (SMD: 1.04, 95%CI: 0.61, 1.47, p < 0.001, I2 = 94%, p < 0.001). The difference was confirmed both in studies in which 8-OHdG levels were assessed in urine (MD: 4.43, 95%CI: 1.71, 7.15, p = 0.001) and in blood samples (MD: 1.42, 95%CI: 0.64, 2.21, p = 0.0004). Meta-regression models showed that age, hypertension, and male gender significantly impacted on the difference in 8-OHdG levels among CVD patients and controls. Future Directions: 8-OHdG levels are higher in patients with CVD than in controls. However, larger prospective studies are needed to test 8-OHdG as a predictor of CVD. Antioxid. Redox Signal. 24, 548-555

    An untargeted lipidomic analysis reveals depletion of several phospholipid classes in patients with familial hypercholesterolemia on treatment with Evolocumab

    Get PDF
    Familial hypercholesterolemia (FH) is caused by mutations in genes involved in low-density lipoprotein cholesterol (LDL-C) metabolism, including those for pro-protein convertase subtilisin/kexin type 9 (PCSK-9). The effect of PCSK-9 inhibition on the plasma lipidome has been poorly explored. Objective: Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, the plasma lipidome of FH subjects before and at different time intervals during treatment with the PCSK-9 inhibitor Evolocumab was explored. Methods and Results: In 25 FH subjects, heterozygotes or compound heterozygotes for different LDL receptor mutations, untargeted lipidomic revealed significant reductions in 26 lipid classes belonging to phosphatidylcholine (PC), sphingomyelin (SM), ceramide (CER), cholesteryl ester (CE), triacylglycerol (TG) and phosphatidylinositol (PI). Lipid changes were graded between baseline and 4- and 12-week treatment. At 12-week treatment, five polyunsaturated diacyl PC, accounting for 38.6 to 49.2% of total PC at baseline; two ether/vinyl ether forms; seven SM; five CER and glucosyl/galactosyl-ceramide (HEX-CER) were reduced, as was the unsaturation index of HEX-CER and lactosyl—CER (LAC-CER). Although non quantitative modifications were observed in phosphatidylethanolamine (PE) during treatment with Evolocumab, shorter and more saturated fatty acyl chains were documented. Conclusions: Depletion of several phospholipid classes occurs in plasma of FH patients during treatment with the PCSK-9 inhibitor Evolocumab. The mechanism underlying these changes likely involves the de novo synthesis of SM and CER through the activation of the key enzyme sphingomyelin synthase by oxidized LDL and argues for a multifaceted system leading to vascular improvement in users of PCSK-9 inhibitor

    Lipid profile changes in patients with rheumatic diseases receiving a treatment with TNF-α blockers: a meta-analysis of prospective studies.

    Get PDF
    Some studies showed an anti-atherogenic effect of TNF-α blockers on lipid profile, but these data have been challenged.To perform a meta-analysis on lipid profile changes induced by TNF-α blocker treatment.Prospective studies on rheumatic patients receiving TNF-α blockers and providing before-and-after treatment values of triglycerides (TGs), total cholesterol (TC), HDL-cholesterol (HDLc), LDL-cholesterol (LDLc), and atherogenic index (AI) were included. Standardized mean differences (SMD) in lipid profile were analyzed at short-term (2-12 weeks), middle-term (13-24 weeks), and long-term (25-52 weeks) assessments.Thirty articles (1707 patients) were included. TNF-α blockers determined an increase in TC at short-term, middle-term, and long-term assessments (SMD: 0.20 mmol/L [95% CI: 0.04, 0.35]; SMD: 0.27 mmol/L [95% CI: 0.08, 0.46]; SMD: 0.22 mmol/L [95% CI: 0.01, 0.43]). HDLc increased only at the short-term assessment (SMD: 0.19 mmol/L [95% CI: 0.10, 0.28]), and TGs achieved a significant increase at the long-term assessment (SMD: 0.19 mmol/L [95% CI: 0.04, 0.34]). LDLc and AI were not affected by TNF-α blocker treatment.Slight but significant increases in TC occurred without any significant change in LDLc and AI. Changes in HDLc and TGs were not consistent among the different time point assessments. These quantitative changes in lipid profile do not seem to be able to explain cardiovascular risk improvement reported in patients receiving TNF-α blockers. Further studies on other mechanisms are needed to address this issue

    Molecular Analysis of Prothrombotic Gene Variants in Venous Thrombosis: A Potential Role for Sex and Thrombotic Localization

    Get PDF
    Background: Requests to test for thrombophilia in the clinical context are often not evidence-based. Aim: To define the role of a series of prothrombotic gene variants in a large population of patients with different venous thromboembolic diseases. Methods: We studied Factor V Leiden (FVL), FVR2, FII G20210A, Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, beta-fibrinogen -455 G>A, FXIII V34L, and HPA-1 L33P variants and PAI-1 4G/5G alleles in 343 male and female patients with deep vein thrombosis (DVT), 164 with pulmonary embolism (PE), 126 with superficial vein thrombosis (SVT), 118 with portal vein thrombosis (PVT), 75 with cerebral vein thrombosis (CVT) and 119 with retinal vein thrombosis (RVT), and compared them with the corresponding variants and alleles in 430 subjects from the general population. Results: About 40% of patients with DVT, PE and SVT had at least one prothrombotic gene variant, such as FVL, FVR2 and FII G20210A, and a statistically significant association with the event was found in males with a history of PE. In patients with a history of PVT or CVT, the FII G20210A variant was more frequent, particularly in females. In contrast, a poor association was found between RVT and prothrombotic risk factors, confirming that local vascular factors have a key role in this thrombotic event. Conclusions: Only FVL, FVR2 and FII G20210A are related to vein thrombotic disease. Other gene variants, often requested for testing in the clinical context, do not differ significantly between cases and controls. Evidence of a sex difference for some variants, once confirmed in larger populations, may help to promote sex-specific prevention of such diseases

    Treatment with PCSK9 inhibitors in patients with familial hypercholesterolemia lowers plasma levels of platelet-activating factor and its precursors: a combined metabolomic and lipidomic approach

    Get PDF
    13openInternationalItalian coauthor/editorIntroduction: Familial hypercholesterolemia (FH) is characterized by extremely high levels of circulating low-density lipoprotein cholesterol (LDL-C) and is caused by mutations of genes involved in LDL-C metabolism, including LDL receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/Kexin type 9 (PCSK9). Accordingly, PCSK9 inhibitors (PCSK9i) are effective in LDL-C reduction. However, no data are available on the pleiotropic effect of PCSK9i. To this end, we performed an untargeted metabolomics approach to gather a global view on changes in metabolic pathways in patients receiving treatment with PCSK9i. Methods: Twenty-five FH patients starting treatment with PCSK-9i were evaluated by an untargeted metabolomics approach at baseline (before PCSK9i treatment) and after 12 weeks of treatment. Results: All the 25 FH subjects enrolled were on maximal tolerated lipid-lowering therapy prior to study entry. After a 12 week treatment with PCSK9i, we observed an expected significant reduction in LDL-cholesterol levels (from 201.0 ± 69.5 mg/dL to 103.0 ± 58.0 mg/dL, p < 0.001). The LDL-C target was achieved in 36% of patients. After peak validation and correction, after 12 weeks of PCSK9i treatment as compared to baseline, we observed increments in creatine (p-value = 0.041), indole (p-value = 0.045), and indoleacrylic acid (p-value= 0.045) concentrations. Conversely, significant decreases in choline (p-value = 0.045) and phosphatidylcholine (p-value < 0.01) together with a reduction in platelet activating factor (p-value = 0.041) were observed. Conclusions: Taking advantage of untargeted metabolomics, we first provided evidence of concomitant reductions in inflammation and platelet activation metabolites in FH patients receiving a 12 week treatment with PCSK9iopenDi Minno, Alessandro; Orsini, Roberta Clara; Chiesa, Mattia; Cavalca, Viviana; Calcaterra, Ilenia; Tripaldella, Maria; Anesi, Andrea; Fiorelli, Susanna; Eligini, Sonia; Colombo, Gualtiero I; Tremoli, Elena; Porro, Benedetta; Di Minno, Matteo Nicola DarioDi Minno, A.; Orsini, R.C.; Chiesa, M.; Cavalca, V.; Calcaterra, I.; Tripaldella, M.; Anesi, A.; Fiorelli, S.; Eligini, S.; Colombo, G.I.; Tremoli, E.; Porro, B.; Di Minno, M.N.D

    8-Hydroxy-2-Deoxyguanosine and 8-Iso-Prostaglandin F2α: Putative Biomarkers to assess Oxidative Stress Damage Following Robot-Assisted Radical Prostatectomy (RARP)

    Get PDF
    Objective: Prostate cancer (PCa) is the most common type of cancer. Biomarkers help researchers to understand the mechanisms of disease and refine diagnostic panels. We measured urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-IsoF2α) to assess oxidative stress damage in PCa patients undergoing robot-assisted radical prostatectomy (RARP). Methods: Forty PCa patients were enrolled in the study. Urine was collected before (T0) and 3 months after the RARP procedure (T1). 8-OHdG and 8-IsoF2α were measured through liquid chromatography-tandem mass spectrometry. Sex- and age-matched healthy subjects served as controls (CTRL). Results: At T0, patients exhibited significantly higher levels of 8-OHdG than CTRL (p = 0.026). At T1, 23/40 patients who completed the 3-month follow-up showed levels of 8-OHdG that were significantly lower than at T0 (p = 0.042), and comparable to those of the CTRL subjects (p = 0.683). At T0, 8-Iso-PGF2α levels were significantly higher in PCa patients than in CTRL subjects (p = 0.0002). At T1, 8-Iso-PGF2α levels were significantly lower than at T0 (p < 0.001) and were comparable to those of CTRL patients (p = 0.087). Conclusions: A liquid chromatography-tandem mass spectrometry method reveals enhanced OHdG and 8-Iso-PGF2α in the urine of PCa patients. RARP normalizes such indices of oxidative stress. Large-sized sample studies and long-term follow-ups are now needed to validate these urinary biomarkers for use in the early prevention and successful treatment of PCa

    Spice-derived bioactive compounds confer colorectal cancer prevention via modulation of gut microbiota

    Get PDF
    Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut’s metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota

    Untargeted metabolomics to go beyond the canonical effect of acetylsalicylic acid

    Get PDF
    15openInternationalItalian coauthor/editorGiven to its ability to irreversibly acetylate the platelet cyclooxygenase-1 enzyme, acetylsalicylic acid (ASA) is successfully employed for the prevention of cardiovascular disease. Recently, an antitumoral effect of ASA in colorectal cancer has been increasingly documented. However, the molecular and metabolic mechanisms by which ASA exerts such effect is largely unknown. Using a new, untargeted liquid chromatography–mass spectrometry approach, we have analyzed urine samples from seven healthy participants that each ingested 100 mg of ASA once daily for 1 week. Of the 2007 features detected, 25 metabolites differing after ASA ingestion (nominal p 1) were identified, and pathway analysis revealed low levels of glutamine and of metabolites involved in histidine and purine metabolisms. Likewise, consistent with an altered fatty acid ÎČ-oxidation process, a decrease in several short- and medium-chain acyl-carnitines was observed. An abnormal ÎČ-oxidation and a lower than normal glutamine availability suggests reduced synthesis of acetyl-Co-A, as they are events linked to one another and experimentally related to ASA antiproliferative effects. While giving an example of how untargeted metabolomics allows us to explore new clinical applications of drugs, the present data provide a direction to be pursued to test the therapeutic effects of ASA—e.g., the antitumoral effect—beyond cardiovascular protectionopenDi Minno, Alessandro; Porro, Benedetta; Turnu, Linda; Manega, Chiara Maria; Eligini, Sonia; Barbieri, Simone; Chiesa, Mattia; Poggio, Paolo; Squellerio, Isabella; Anesi, Andrea; Fiorelli, Susanna; Caruso, Donatella; Veglia, Fabrizio; Cavalca, Viviana; Tremoli, ElenaDi Minno, A.; Porro, B.; Turnu, L.; Manega, C.M.; Eligini, S.; Barbieri, S.; Chiesa, M.; Poggio, P.; Squellerio, I.; Anesi, A.; Fiorelli, S.; Caruso, D.; Veglia, F.; Cavalca, V.; Tremoli, E
    • 

    corecore