1,335 research outputs found

    Basic fibroblast growth factor mediates carotid plaque instability through metalloproteinase-2 and –9 expression

    Get PDF
    OBJECTIVE(S): We hypothesized that basic fibroblast growth factor (bFGF) may exert a role in carotid plaque instability by regulating the expression of matrix metalloproteinases (MMP). METHODS: Plaques obtained from 40 consecutive patients undergoing carotid endarterectomy were preoperatively classified as soft or hard. Serum bFGF was pre- and postoperatively measured. The release of MMP-2 and MMP-9 in the blood serum, and the activity, production and expression in the carotid specimens was analyzed. Specific anti-bFGF inhibition tests were performed in vitro on human umbilical artery smooth muscle cells (HUASMC) to evaluate the role of bFGF in the activity, production and expression of MMP-2 and -9. RESULTS: Twenty-one (53%) patients had a soft carotid plaque and 19 (48%) a hard plaque. Preoperative bFGF serum levels were higher in patients with soft plaques [soft=34 (28-39) pg/mL and hard=20 (17-22) pg/mL-p<0.001] and postoperatively returned to normal values (when compared to 10 healthy volunteers). The serum levels of MMP-2 in patients' with soft plaques were higher than those in patients' with hard plaques [soft=1222 (1190-1252) ng/mL and hard=748 (656-793)ng/mL-p<0.0001]. MMP-9 serum values were 26 (22-29) ng/mL for soft plaques and 18 (15-21) ng/mL for hard plaques (p<0.0001). We found increased activity, production and expression of MMP-2 and -9 in soft plaques compared to hard plaques (p<0.001). In vitro inhibition tests on HUASMC showed the direct influence of bFGF on the activity, production and expression of MMP-2 and -9 (p<0.001). CONCLUSIONS: bFGF seems to exert a key role in carotid plaque instability regulating the activity, production and expression of MMP thus altering the physiologic homeostasis of the carotid plaque

    Risk factors for adenocarcinoma in the surgically transposed colon not exposed to the fecal stream. Etiological considerations extrapolated to sporadic colon carcinoma in the general population

    Get PDF
    The aim of the study was to analyze the clinical characteristics and outcomes of patients with de novo secondary adenocarcinoma arising in the operatively transposed colon not exposed to the fecal stream

    Antinociceptive effects of tetrazole inhibitors of endocannabinoid inactivation: Cannabinoid and non-cannabinoid receptor-mediated mechanisms

    Get PDF
    Background and purpose: Tetrazoles were recently developed as inhibitors of the cellular uptake of the endocannabinoid anandamide or of its hydrolysis by fatty acid amide hydrolase (FAAH), but were proposed to act also on non-endocannabinoid-related serine hydrolases. Experimental approach: We tested, in a model of inflammatory pain induced in mice by formalin, five chemically similar inhibitors: (i) OMDM119 and OMDM122, two potent carbamoyl tetrazole FAAH inhibitors with no effect on anandamide uptake; (ii) LY2183240, a carbamoyl tetrazole with activity as both FAAH and uptake inhibitor; (iii) OMDM132, a non-carbamoyl tetrazole with activity only as uptake inhibitor and iv) OMDM133, a non-carbamoyl tetrazole with no activity at either FAAH or uptake. Results: All compounds (2.5-10 mg kg -1, i.p.) inhibited the second phase of the nocifensive response induced by intraplantar injection of formalin. The effects of OMDM119, OMDM122 and OMDM133 were not antagonized by pretreatment with cannabinoid CB 1 receptor antagonists, such as rimonabant or AM251 (1-3 mg kg -1, i.p.). The effects of LY2183240 and OMDM132 were fully or partially antagonized by rimonabant, respectively, and the latter compound was also partly antagonized by the CB 2 receptor antagonist, AM630. Conclusions and implications: (i) non-FAAH hydrolases might be entirely responsible for the antinociceptive activity of some, but not all, tetrazole FAAH inhibitors, (ii) the presence of a carbamoylating group is neither necessary nor sufficient for such compounds to act through targets other than FAAH and (iii) inhibition of anandamide uptake is responsible for part of this antinociceptive activity, independently of effects on FAAH. © 2008 Macmillan Publishers Limited All rights reserved

    Chronic exposure to cannabinoids during adolescence causes long-lasting behavioral deficits in adult mice

    Get PDF
    Regular use of marijuana during adolescence enhances the risk of long-lasting neurobiological changes in adulthood. The present study was aimed at assessing the effect of long-term administration of the synthetic cannabinoid WIN55212.2 during adolescence in young adult mice. Adolescent mice aged 5 weeks were subjected daily to the pharmacological action of WIN55212.2 for 3 weeks and were then left undisturbed in their home cage for a 5-week period and finally evaluated by behavioral testing. Mice that received the drug during adolescence showed memory impairment in the Morris water maze, as well as a dose-dependent memory impairment in fear conditioning. In addition, the administration of 3 mg/kg WIN55212.2 in adolescence increased adult hippocampal AEA levels and promoted DNA hypermethylation at the intragenic region of the intracellular signaling modulator Rgs7, which was accompanied by a lower rate of mRNA transcription of this gene, suggesting a potential causal relation. Although the concrete mechanisms underlying the behavioral observations remain to be elucidated, we demonstrate that long-term administration of 3 mg/kg of WIN during adolescence leads to increased endocannabinoid levels and altered Rgs7 expression in adulthood and establish a potential link to epigenetic changes.Beca Ramón y Caja
    • …
    corecore