166 research outputs found

    mGluR2/3 agonist LY379268, by enhancing the production of GDNF, induces a time-related phosphorylation of RET receptor and intracellular signaling Erk1/2 in mouse striatum.

    Get PDF
    In the present study we aimed to verify if the enhancement of glial cell line-derived neurotrophic factor (GDNF) production in mouse striatum following treatment with LY379268 may also induce in the nigrostriatal system a time-related activation of RET receptor and its specific intracellular signaling. For this purpose, we have investigated the effects of LY379268 treatment on RET phosphorylation at the Tyr1062 and on downstream signaling Erk1/2, Akt and PLCγ1 pathway activation. The results showed that treatment with LY379268 (3 mg/kg) induces a significant increase of GDNF levels and time-related RET and Erk1/2 phosphorylation in the striatum. These increases were detected at 24 h and 48 h following LY379268 treatment. No changes were observed in the Akt and PLCγ1 phosphorylation levels. Similar results for p-Erk1/2 were observed in the substantia nigra. A complete block of LY379268 effect on striatal RET and p-Erk1/2 phosphorylation was observed in mice intrastriatal injected with anti-GDNF antibodies, suggesting a correlation between GDNF upregulation and RET activation. Overall, with present data we have shown that activation of mGluR2/3 receptors by LY379268 may be particularly promising for nigrostriatal dopaminergic system protection by enhancing striatal levels of GDNF/RET trophic system activity

    Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects

    Get PDF
    : The differentiation of neural progenitors is a complex process that integrates different signals to drive transcriptional changes, which mediate metabolic, electrophysiological, and morphological cellular specializations. Understanding these adjustments is essential within the framework of stem cell and cancer research and therapy. Human neuroblastoma SH-SY5Y cells, widely used in neurobiology research, can be differentiated into neuronal-like cells through serum deprivation and retinoic acid (RA) supplementation. In our study, we observed that the differentiation process triggers the expression of Heat Shock Protein 70 (HSP70). Notably, inhibition of HSP70 expression by KNK437 causes a dramatic increase in cell death. While undifferentiated SH-SY5Y cells show a dose-dependent decrease in cell survival following exposure to hydrogen peroxide (H2O2), differentiated cells become resistant to H2O2-induced cell death. Interestingly, the differentiation process enhances the expression of SOD1 protein, and inhibition of HSP70 expression counteracts this effect and increases the susceptibility of differentiated cells to H2O2-induced cell death, suggesting that the cascade HSP70-SOD1 is involved in promoting survival against oxidative stress-dependent damage. Treatment of differentiated SH-SY5Y cells with Oxotremorine-M (Oxo), a muscarinic acetylcholine receptor agonist, enhances the expression of HSP70 and SOD1 and counteracts tert-Butyl hydroperoxide-induced cell death and reactive oxygen species (ROS) generation. It is worth noting that co-treatment with KNK437 reduces SOD1 expression and Oxo-induced protection against oxidative stress damage, suggesting the involvement of HSP70/SOD1 signaling in this beneficial effect. In conclusion, our findings demonstrate that manipulation of the HSP70 signal modulates SH-SY5Y differentiation and susceptibility to oxidative stress-dependent cell death and unravels novel mechanisms involved in Oxo neuroprotective functions. Altogether these data provide novel insights into the mechanisms underlying neuronal differentiation and preservation under stress conditions

    Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus

    Get PDF
    Although connexin36 (Cx36) has been studied in several tissues, it is notable that no data are available on Cx36 expression in the carotid body and the intestine. The present study was undertaken to evaluate using immunohistochemistry, PCR and Western blotting procedures, whether Cx36 was expressed in the mouse carotid body and in the intestine at ileum and colon level. In the carotid body, Cx36 was detected as diffuse punctate immunostaining and as protein by Western blotting and mRNA by RT-PCR. Cx36 punctate immunostaining was also evident in the intestine with localization restricted to the myenteric plexus of both the ileum and the colon, and this detection was also confirmed by Western blotting and RT-PCR. All the data obtained were validated using Cx36 knockout mice. Taken together the present data on localization of Cx36 gap-junctions in two tissues of neural crest-derived neuroendocrine organs may provide an anatomical basis for future functional investigations

    Current disease modifying approaches to treat Parkinson's disease

    Get PDF
    Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.Peer reviewe

    Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System

    Get PDF
    : Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The "cholesterol shuttle" is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Niemann-Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol-purine reciprocal control could hopefully promote further research

    An upstream enhancer and MEF2 transcription factors fine-tune the regulation of the Bdnf gene in cortical and hippocampal neurons

    Get PDF
    : The myocyte enhancer factor (MEF2) family of transcription factors, originally discovered for its pivotal role in muscle development and function, has emerged as an essential regulator in various aspects of brain development and neuronal plasticity. The MEF2 transcription factors are known to regulate numerous important genes in the nervous system, including brain-derived neurotrophic factor (BDNF), a small secreted neurotrophin responsible for promoting the survival, growth, and differentiation of neurons. The expression of the Bdnf gene is spatiotemporally controlled by various transcription factors binding to both its proximal and distal regulatory regions. While previous studies have investigated the connection between MEF2 transcription factors and Bdnf, the endogenous function of MEF2 factors in the transcriptional regulation of Bdnf remains largely unknown. Here, we aimed to deepen the knowledge of MEF2 transcription factors and their role in the regulation of Bdnf comparatively in rat cortical and hippocampal neurons. As a result, we demonstrate that the MEF2 transcription factor-dependent enhancer located at -4.8 kb from the Bdnf gene regulates the endogenous expression of Bdnf in hippocampal neurons. In addition, we confirm neuronal-activity dependent activation of the -4.8 kb enhancer in vivo. Finally, we show that specific MEF2 family transcription factors have unique roles in regulation of Bdnf, with the specific function varying based on the particular brain region and stimuli. Altogether, we present MEF2 family transcription factors as crucial regulators of Bdnf expression, finetuning Bdnf expression through both distal and proximal regulatory regions

    Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms

    Get PDF
    Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors reduced but not abolished it. Importantly, GUO-mediated neuron-like cell differentiation was independent of adenosine receptor activation as it was not altered by the blockade of these receptors. Noteworthy, the neuritogenic activity of GUO was not affected by blocking the phosphoinositide 3-kinase pathway, while it was reduced by inhibitors of protein kinase C or soluble guanylate cyclase. Furthermore, the inhibitor of the enzyme heme oxygenase-1 but not that of nitric oxide synthase reduced GUO-induced neurite outgrowth. Interestingly, we found that GUO was largely metabolized into guanine by the purine nucleoside phosphorylase (PNP) enzyme released from cells. Taken together, our results suggest that GUO, promoting neuroblastoma cell differentiation, may represent a potential therapeutic agent; however, due to its spontaneous extracellular metabolism, the role played by the GUO-PNP-guanine system needs to be further investigated

    Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23

    Get PDF
    Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint effector of GBP antiproliferative effects. Accordingly, cells stably expressing GPR23 showed increased sensitivity to GUA. Furthermore, while GPR23 expression was low in a hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-mutated melanoma cell line showing poor sensitivity to GBPs, and in HGPRT-silenced glioma cells, GPR23-induced expression in both cell types rescued GUA-mediated cell growth inhibition. Finally, binding experiments using [H-3]-GUA and U87 cell membranes revealed the existence of a selective GUA binding (K-D = 29.44 & PLUSMN; 4.07 nM; Bmax 1.007 & PLUSMN; 0.035 pmol/mg prot) likely to GPR23. Overall, these data suggest GPR23 involvement in modulating responses to GUA in tumor cell lines, although further research needs to verify whether this receptor mediates other GUA effects

    Natalizumab in Multiple Sclerosis: Long-Term Management

    Get PDF
    Natalizumab is a monoclonal antibody highly effective in the treatment of relapsing remitting multiple sclerosis (RRMS) patients. Despite its effectiveness, there are growing concerns regarding the risk of progressive multifocal leukoencephalopathy (PML), a brain infection caused by John Cunningham virus (JCV), particularly after 24 doses and in patients who previously received immunosuppressive drugs. Long-term natalizumab treated, immunosuppressive-pretreated, and JCV antibody-positive patients are asked to rediscuss natalizumab continuation or withdrawal after 24 doses. Until now, there has not been a clear strategy that should be followed to avoid PML risk and in parallel reduce clinical and radiological rebound activity. In this review, we analyzed the results of clinical trials and case reports in relation to the following situations: natalizumab continuation, natalizumab discontinuation followed by full therapeutic suspension or switch to other first or second line MS treatments. Quitting all MS treatment after natalizumab increases MS activity occurrence. The results regarding the therapeutic switch are not homogeneous, so at the moment there are no established guidelines regarding natalizumab treatment after 24 administrations; the choice is currently based on the professional experience of the neurologist, and on patients’ clinical features and preferences
    • …
    corecore