198 research outputs found

    A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Policy 49 (2014):146-154, doi:10.1016/j.marpol.2013.11.017.The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: 1) Comparatively assess potential VME indicator taxa and habitats in a region; 2) determine VME thresholds; 3) consider areas already known for their ecological importance; 4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; 5) develop predictive distribution models for VME indicator taxa and habitats; 6) compile known or likely fishing impacts; 7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); 8) identify areas of higher value to user groups; 9) conduct management strategy evaluations to produce trade-off scenarios; 10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.The New Zealand Ministry of Science and Innovation (now known as the Ministry of Business, Innovation and Employment) provided funding for the worksho

    Fitness consultations in routine care of patients with type 2 diabetes in general practice: an 18-month non-randomised intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing physical activity is a cornerstone in the treatment of type 2 diabetes and in general practice it is a challenge to achieve long-term adherence to this life style change. The aim of this study was to investigate in a non-randomised design whether the introduction of motivational interviewing combined with fitness tests in the type 2 diabetes care programme was followed by a change in cardio-respiratory fitness expressed by VO<sub>2max</sub>, muscle strength of upper and lower extremities, haemoglobin A<sub>1c </sub>(HbA<sub>1c</sub>) and HDL-cholesterol.</p> <p>Methods</p> <p>Uncontrolled 18-month intervention study with follow-up and effect assessment every 3 months in a primary care unit in Denmark with six general practitioners (GPs). Of 354 eligible patients with type 2 diabetes, 127 (35.9%) were included. Maximum work capacity was tested on a cycle ergometer and converted to VO<sub>2max</sub>. Muscle strength was measured with an arm curl test and a chair stand test. The results were used in a subsequent motivational interview conducted by one of the GPs. Patients were encouraged to engage in lifestyle exercise and simple home-based self-managed exercise programmes. Data were analysed with mixed models.</p> <p>Results</p> <p>At end of study, 102 (80.3%) participants remained in the intervention. Over 18 months, VO<sub>2max </sub>increased 2.5% (p = 0.032) while increases of 33.2% (p < 0.001) and 34.1% (p < 0.001) were registered for the arm curl test and chair stand test, respectively. HDL-cholesterol increased 8.6% (p < 0.001), but HbA<sub>1c </sub>remained unchanged (p = 0.57) on a low level (6.8%). Patients without cardiovascular disease or pain from function limitation increased their VO<sub>2max </sub>by 5.2% (p < 0.0001) and 7.9% (p = 0.0008), respectively.</p> <p>Conclusions</p> <p>In this 18-month study, participants who had repeated fitness consultations, including physical testing and motivational interviewing to improve physical activity, improved VO<sub>2max</sub>, muscle strength, and lipid profile. Our results indicate that physical testing combined with motivational interviewing is feasible in a primary health care setting. Here, a fitness consultation tailored to the individual patient, his/her comorbidities and conditions in the local area can be incorporated into the diabetes programme to improve patients' muscle strength and cardio-respiratory fitness.</p

    Sitting Time and Body Mass Index in Diabetics and Pre-Diabetics Willing to Participate in a Lifestyle Intervention

    Get PDF
    This cross-sectional study examined the relationship between Body Mass Index (BMI), total sitting time and total physical activity time in a generally overweight or obese population of type 2 diabetics or pre-diabetics willing to participate in a lifestyle intervention [n = 221, 55.1% male, mean age (SD) 62.0 (9.9), mean BMI (SD) 31.4 (5.0)]. In addition, we aimed to identify demographic and psychosocial associates of the motivation to become more physically active. The measurement instrument was a self-report questionnaire. Results showed that total sitting time was more closely related to BMI than total physical activity time. Subjects with a higher weight status were more sedentary, but they were also more motivated to be physically active. On the other hand, their self-efficacy to be physically active was lower than subjects with a lower weight status. Lifestyle interventions to decrease the risk of obesity and type 2 diabetes should aim not only at increasing total physical activity time, but also at reducing the total sitting time. Despite generally high levels of motivation among these obese participants, intervention designers and intermediaries should be aware of their low level of self-efficacy towards being physically active

    Considerations when using the activPAL monitor in field-based research with adult populations

    Get PDF
    Research indicates that high levels of sedentary behavior (sitting or lying with low energy expenditure) are adversely associated with health. A key factor in improving our understanding of the impact of sedentary behavior (and patterns of sedentary time accumulation) on health is the use of objective measurement tools that collect date and time-stamped activity information. One such tool is the activPAL monitor. This thigh-worn device uses accelerometer-derived information about thigh position to determine the start and end of each period spent sitting/lying, standing, and stepping, as well as stepping speed, step counts, and postural transitions. The activPAL is increasingly being used within field-based research for its ability to measure sitting/lying via posture. We summarise key issues to consider when using the activPAL in physical activity and sedentary behavior field-based research with adult populations. It is intended that the findings and discussion points be informative for researchers who are currently using activPAL monitors or are intending to use them. Pre-data collection decisions, monitor preparation and distribution, data collection considerations, and manual and automated data processing possibilities are presented using examples from current literature and experiences from 2 research groups from the UK and Australia

    PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ–RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network

    Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch

    Get PDF
    Factors were defined for elongation, rooting and acclimatization of micropropagated shoots of Larix x eurolepis Henry initiated from short shoot buds of plagiotropic stecklings serially propagated for 9 years from an 8-year-old tree. Initiation and multiplication were on Schenk and Hildebrandt (SH) medium supplemented with 5 μM 6-benzyladenine (BA) and 1 μM indole-butyric acid (IBA). Stem elongation was obtained in 36% of the shoots on SH medium containing 0.5 μM BA and 63% of the remaining non-elongated shoots initiated stem elongation after transfer on SH medium devoid of growth regulators. Rooting involved 2 steps: root induction on Campbell and Durzan mineral salts and Murashige and Skoog organic elements, both half-strength (CD-MS/2), supplemented with 1 μM of both naphthaleneacetic acid (NAA) and IBA, and root elongation following transfer to CD-MS/2 medium devoid of growth regulators. Repeating this 2-step sequence yielded up to 67% rooted shoots. Acclimatization of plantlets ranged from 83% to 100%. Over 300 plants were transferred to the greenhouse; some showed plagiotropic growth

    Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS: Structured exercise is considered a cornerstone in type 2 diabetes treatment. However, adherence to combined resistance and endurance type exercise or medical fitness intervention programmes is generally poor. Group-based brisk walking may represent an attractive alternative, but its long-term efficacy as compared with an individualised approach such as medical fitness intervention programmes is unknown. We compared the clinical benefits of a 12-month exercise intervention programme consisting of either brisk walking or a medical fitness programme in type 2 diabetes patients. METHODS: We randomised 92 type 2 diabetes patients (60 +/- 9 years old) to either three times a week of 60 min brisk walking (n = 49) or medical fitness programme (n = 43). Primary outcome was the difference in changes in HbA1c values at 12 months. Secondary outcomes were differences in changes in blood pressure, plasma lipid concentrations, insulin sensitivity, body composition, physical fitness, programme adherence rate and health-related quality of life. RESULTS: After 12 months, 18 brisk walking and 19 medical fitness participants were still actively participating. In both programmes, 50 and 25% of the dropout was attributed to overuse injuries and lack of motivation, respectively. Intention-to-treat analyses showed no important differences between brisk walking and medical fitness programme in primary or secondary outcome variables. CONCLUSIONS/INTERPRETATION: The prescription of group-based brisk walking represents an equally effective intervention to modulate glycaemic control and cardiovascular risk profile in type 2 diabetes patients when compared with more individualised medical fitness programmes. Future exercise intervention programmes should anticipate the high attrition rate due to overuse injuries and motivation problems

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity
    corecore