227 research outputs found

    Production of probiotic bovine salami using Lactobacillus plantarum 299v as adjunct

    Get PDF
    BACKGROUND: Five probiotic lactobacilli were tested, alone or in combination with two commercial starters, to select the most suitable strain for a probiotic bovine salami production. Lactobacillus plantarum 299v was used with both starters, to make salami according to a traditional recipe. Salami obtained by using just the starters and by spontaneous fermentation, served as control. Microbial dynamics, as well as the main physico-chemical parameters, were monitored throughout ripening. The survival of probiotic 299v was confirmed by strains' tracking by means of RAPD-PCR coupled to a culture-independent approach PCR-DGGE-based. RESULTS: The results showed a remarkable viability of the probiotic strain even after 60 days of storage. Experimental salami exhibited the same level of sensory acceptance of control salami, were hygienically safe, and characterised by pH, weight loss and microbiological loads within the ranges conventionally advocated for optimal fermented sausages. CONCLUSION: Outcomes indicate the workable possibility of using second-quality beef cuts for probiotic salami production. © 2017 Society of Chemical Industry

    Effect of chicken bone extracts on metabolic and mitochondrial functions of K562 cell line

    Get PDF
    Background: Tetracyclines’ use in intensive animal farming has raised some concerns regarding the biosafety for humans. Increasing evidences have revealed the presence of these drugs in processed animal by-products, such as bone, throughout the food chain. A potential off-target of tetracyclines is the bacterial-like mitochondrial translational machinery, thereby causing proteostatic alterations in mitochondrial DNA-encoded components of the oxidative phosphorylation system. Methods: The Seahorse methodology, confocal microscopy imaging of mitochondrial potential and reactive oxygen species, and q-RT-PCR analysis of the expression of genes involved in mitochondrial biogenesis and mitophagy were carried out on human lymphoblast derived K562 cell line challenged with bone powder derived from chicken treated with or without oxytetracycline and pure oxytetracycline. Results: A complex dose-dependent profile was attained with a low dosage of bone powder extracts causing a metabolic adaptation hallmarked by stimulation of the mitochondrial respiration and enhanced expression of mitochondriogenic factors in particular in cells challenged with oxytetracycline-free bone extract. Conversely, a higher dosage of bone powder extracts, regardless of their source, caused a progressive inhibition of mitochondrial respiration and glycolysis, ultimately leading to cell death. No significant effects of the pure oxytetracycline were observed. Conclusion: Bone powder, regardless of chicken treatment, contains and releases factors/chemicals responsible for the observed effects on energy metabolism. Quantitative differential effects appear to depend on biochemical alterations in the bone matrix caused by antibiotics rather than antibiotics themselves

    Understanding the Pathogenesis of Red Mark Syndrome in Rainbow Trout (Oncorhynchus mykiss) through an Integrated Morphological and Molecular Approach

    Get PDF
    Red mark syndrome (RMS) is a widespread skin disorder of rainbow trout in freshwater aquaculture, believed to be caused by a Midichloria-like organism (MLO). Here, we aimed to study the pathologic mechanisms at the origin of RMS by analyzing field samples from a recent outbreak through gene expression, MLO PCR, quantitative PCR, and a histopathological scoring system proposed for RMS lesions. Statistical analyses included a One-Way Analysis of Variance (ANOVA) with a Dunnett’s multiple comparisons test to assess differences among gene expression groups and a nonparametric Spearman correlation between various categories of skin lesions and PCR results. In short, the results confirmed the presence of a high quantity of 16S gene copy numbers of Midichloria-like organisms in diseased skin tissues. However, the number of Midichloria-like organisms detected was not correlated to the degree of severity of skin disease. Midichloria-like organism DNA was found in the spleen and head kidney. The spleen showed pathologic changes mainly of hyperplastic type, reflecting its direct involvement during infection. The most severe skin lesions were characterized by a high level of inflammatory cytokines sustaining and modulating the severe inflammatory process. IL-1 β, IL-6, IL-10, MHC-II, and TCR were upregulated in severe skin lesions, while IL-10 was highly expressed in moderate to severe ones. In the moderate form, the response was driven to produce immunoglobulins, which appeared crucial in controlling the skin disease’s severity. Altogether our results illustrated a complex immune interaction between the host and Midichloria-like organism

    Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy

    Get PDF
    Background: Gastrointestinal nematodes (GINs) is one of the main constraints to ruminant production worldwide. Anthelmintic resistance (AR) has been reported in goats throughout Europe, yet little is known about the AR status in Italy. The aims of the study were: i) determine the frequency of AR in GINs in goat flocks in Northern Italy, Italy, ii) survey goat farmers on the current practices of parasite control, iii) update the species composition of the gastrointestinal helminthofauna. Thirty three flocks were enrolled and 1288 individual fecal samples were collected. Based on the egg per gram (EPG), 15 flocks were selected to evaluate the presence of AR in GINs with the Fecal Egg Count Reduction Test (FECRT). A questionnaire surveyed 110 dairy goat farmers to acquire information about farm management and drenching practices against GINs. Further, the gastrointestinal tracts of 42 goats were analyzed. Results: The FECRs indicated that five of the 15 flocks had problems of AR, which was identified in all two of the anthelmintic classes tested. Resistance and suspected resistance was found in 40% of the flocks selected for AR testing that were treated with benzimidazoles while 20% of the flocks treated with eprinomectin had resistant GINs. Teladorsagia/Trichostrongylus L3 were isolated from the post-treatment coprocultures of all flocks with resistance but not from the flock with suspected oxfendazole resistance. Treatments against helminths were performed once annually in 73.63% of the flocks, but 20.00% of farmers declared not regularly treating their goats every year. Annual treatments usually occurred in autumn or winter at dose rate for sheep. Te. circumcincta, H. contortus, Tr. colubriformis, Skrjabinema caprae and Oesophagostomum venulosum were the most abundant and prevalent species of the gastrointestinal tract. Conclusions: Strategies to prevent the development of AR should be widely adopted in Northern Italy. Further, farmers and practitioners should be educated about the importance of using the correct dose rates in goats. In addition, the presence of highly pathogenic GINs coupled with high worm burden in all sector of gastrointestinal tract and the prevalence values further suggest that improved diagnosis and active surveillance of GIN infection is needed

    Dietary Supplementation of Nile Tilapia (Oreochromis niloticus) With Panax ginseng Essential Oil: Positive Impact on Animal Health and Productive Performance, and Mitigating Effects on Atrazine-Induced Toxicity

    Get PDF
    The present study assessed the impact of Panax ginseng essential oil (GEO) supplementation on physiological parameters related to productive performance and health status in Nile tilapia reared under standard conditions and exposed to a sub-lethal atrazine (ATZ) concentration. Fish were allocated into 6 groups: the control group was reared in clean water and fed with a commercial basal diet (CNT), two groups were fed with the basal diet supplemented with two different levels of GEO (GEO1 and GEO2, respectively), one group was intoxicated with 1/5 of ATZ 96-h lethal concentration 50 (1.39 mg/L) (ATZ group), and the remaining two groups were fed with the GEO-supplemented diets and concurrently exposed to 1.39 mg ATZ/L (GEO1+ATZ and GEO2+ATZ, respectively). The experiment lasted for 60 days. GEO supplementation exerted a significantly positive influence on fish growth, feed utilization, and hepatic antioxidant defense systems at both levels of supplementation. ATZ exposure significantly reduced fish survival rates and impaired fish growth and feed utilization, with the lowest final weights, weight gain, total feed intake, and the highest feed conversion ratio being recorded in the ATZ-intoxicated group. ATZ exposure caused significant changes in intestinal digestive enzyme activity (decreased lipase activity), hematological indices (decreased hemoglobin, packed cell volume, erythrocytes, and leukocytes), blood biochemical variables (decreased total proteins, albumin, globulins, and immunoglobulin M; increased total cholesterol, triglycerides, and cortisol), and hepatic oxidative/antioxidant indices (decreased glutathione level, superoxide dismutase and catalase enzyme activity and mRNA expression levels, and increased malondialdehyde content). Moreover, in the hepatic tissue of ATZ-intoxicated Nile tilapia, histopathological alterations and upregulated mRNA expression levels of stress- and apoptosis-related genes (Hsp70, caspase 3, and p53) were observed. GEO supplementation in ATZ-treated groups significantly attenuated the aforementioned negative effects, though some parameters did not reach the CNT values. These findings provide further and partly new evidence that sub-lethal ATZ toxicity induces reduced survivability, growth retardation, impaired digestive function, anemia, immunosuppression, hepatic oxidative stress damage, and overall increased stress level in Nile tilapia, and suggest that GEO supplementation may be useful for mitigating this toxicity and provide more general support to the productive performance and health status of this fish species

    Growing and laying performance of two different-plumage color Japanese quail varieties supplemented with corn silk in their diet

    Get PDF
    The current study aimed to investigate the dietary supplementation effect of corn silk (CS) on performance and blood chemistry of brown and whitefeathered quails during the grower and layer periods. Japanese quails of brown and white-feathered color (180 birds/variety at 2 wks old) were randomly allotted into three groups with 3 replicates each (n = 20 birds/ replicate). Corn silk powder (CS) was supplemented to the basal diet at 0, 1, and 2% of the diet for each quail variety for 1-month growing period, then continued for another 6-wk laying period to assess the egg production and egg quality characteristics. CS supplementation at 1% and 2% for brown and white-feathered quails respectively improved their growth performance (body weight and weight gain), carcass yield, and intestinal villi length with increasing feed consumption but without changes in feed conversion ratio. In both quail varieties, CS addition had a hypolipidemic effect, confirmed by lowering serum triglyceride (TG), cholesterol (CHO), and low density lipoprotein (LDL) while increased high density lipoprotein (HDL) concentrations (P < 0.05) with a clear response observed in white quails than the brown ones. Besides, CS supplementation increased (P = 0.002) hen day egg production in brown feathered quails, while reducing it in the white-feathered quails compared with the CS-free diet. The increased egg production was not significantly (P > 0.05) correlated with lower content of TG and CHO, while significantly increased the antioxidant content in both quail varieties (P < 0.05). Moreover, CS dietary supplementation significantly enhanced (P = 0.003) the yolk color, especially in brown-feathered quail. In conclusion, CS can be safely supplemented to the Japanese quail diet (1% and 2% for brown-feathered and white-feathered quails respectively) to improve growth performance, and egg quality characteristics

    Modulatory effect of thymol on the immune response and susceptibility to Aeromonas hydrophila infection in Nile tilapia fish exposed to zinc oxide nanoparticles

    Get PDF
    Zinc oxide nanoparticles (ZnO-NPs) have many exciting properties that make their use in a continuous increase in various biomedical, industrial, and agricultural applications. This is associated with accumulation in the aquatic ecosystems and fish exposure with consequent deleterious effects. To determine the potential of thymol to counteract the immunotoxic effects of ZnO-NPs, Oreochromis niloticus was exposed to ZnO-NPs (⅕ LC50 =1.14 mg/L, for 28 days) with or without feeding a thymol-incorporated diet (1 or 2 g/kg diet). Our data demonstrated a reduction of aquaria water quality, leukopenia, and lymphopenia with a decrease in serum total protein, albumin, and globulin levels in exposed fish. At the same time, the stress indices (cortisol and glucose) were elevated in response to ZnO-NPs exposure. The exposed fish also revealed a decline in serum immunoglobulins, nitric oxide, and the activities of lysozyme and myeloperoxidase, in addition to reduced resistance to the Aeromonas hydrophila challenge. The RT-PCR analysis showed downregulation of antioxidant (SOD) superoxide dismutase and (CAT) catalase gene expression in the liver tissue with overexpression of the immune-related genes (TNF-α and IL-1β). Importantly, we found that thymol markedly protected against ZnO-NPs-induced immunotoxicity in fish co-supplemented with thymol (1 or 2 g/kg diet) in a dose-dependent manner. Our data confirm the immunoprotective and antibacterial effects of thymol in ZnO-NPs exposed fish, supporting the potential utility of thymol as a possible immunostimulant agent

    Zoledronic acid induces a significant decrease of circulating endothelial cells and circulating endothelial precursor cells in the early prostate cancer neoadjuvant setting

    Get PDF
    Purpose: Published data demonstrated that zoledronic acid (ZOL) exhibits antiangiogenetic effects. A promising tool for monitoring antiangiogenic therapies is the measurement of circulating endothelial cells (CECs) and circulating endothelial precursor cells (CEPs) in the peripheral blood of patients. Our aim was to investigate the effects of ZOL on levels of CECs and CEPs in localized prostate cancer. Methods: Ten consecutive patients with a histologic diagnosis of low-risk prostate adenocarcinoma were enrolled and received an intravenous infusion of ZOL at baseline (T0), 28 days (T28) and 56 days (T56). Blood samples were collected at the following times: T0 (before the first infusion of ZOL), T3 (72 h after the first dose), T28, T56 (both just before the ZOL infusion) and T84 (28 days after the last infusion of ZOL) and CEC/CEP levels were directly quantified by flow cytometry at all these time points. Results: Our analyses highlighted a significant reduction of mean percentage of CECs and CEPs after initiation of ZOL treatment [p = 0.014 (at day 3) and p = 0.012 (at day 84), respectively]. Conclusion: These preliminary results demonstrate that ZOL could exert an antiangiogenic effect in early prostate cancer through CEP and CEC modulation

    Physiological and Neurobehavioral Disturbances Induced by Al2O3 Nanoparticle Intoxication in Nile Tilapia Fish: Benefits of Dietary Chamomile Essential Oil

    Get PDF
    Despite the usage of nanoparticles (NPs) is rapidly increasing, several experts have noted the risk of their release into ecosystems and their potential negative impacts on biological systems. However, the available studies on the neurobehavioral impacts of aluminum oxide nanoparticles (Al2O3NPs) on aquatic organisms are little. Hence, this study targeted to ascertain the harmful effects of Al2O3NPs on behavioral characteristics and genotoxic and oxidative damages in Nile tilapia fish. In addition, the beneficial role of chamomile essential oil (CEO) supplementation in reducing these effects was also investigated. In the current study, fish were distributed into 4 equal groups (n = 60 fish per group). The control group was fed a plain diet only, the CEO group received a basic diet complemented with CEO at a level of 2 mg/kg diet, the ALNP group received a basic diet and was exposed to an approximate concentration of 1/10th LC50 of ALNPs nearly 5.08 mg/L, and the combination group (ALNPs/ CEO group) received a basal diet coadministered with ALNPs and CEO at the aforementioned percentages. The findings revealed that O. niloticus exhibit neurobehavioral changes along with changes in the level of GABA, monoamines in the brain tissue, and serum amino acid neurotransmitters, besides a reduction of AChE and Na+/K+-ATPase activities. In addition to brain tissue oxidative damage with upregulation of proinflammatory and stress genes, such as HSP70 and caspase-3, supplementation of CEO significantly reduced the negative impacts of ALNPs. These results showed that CEO has neuroprotective, antioxidant, genoprotective, anti-inflammatory, and antiapoptotic properties in fish that have been exposed to ALNPs. Therefore, we advise its usage as a valuable addition to fish diet
    • …
    corecore