575 research outputs found

    Feedforward decoupling control method in grid-interfaced inverter

    Full text link
    Recently, microgrid has been studied and applied widely all over the world. More and more experimental microgrids are being connected to the utility grid. This paper presents an improvement in the real and reactive power control of three-phase grid-interfaced inverter for microgrid applications. Based on the traditional PI feedback current control, the desirable values of P and Q can be achieved by controlling the currents in d-q stationary frame. Moreover, the feedforward control method also brings some advantages to the systems such as higher reliability and enhanced stability. One of the most important improvements is to decouple the real and reactive power, i.e. P and Q are controlled separately. In this paper, the controller with feedforward algorithm has been simulated and shows some promiscuous results. Β© 2013 Australasian Committee for Power Engineering (ACPE)

    ORMDL3 expression in ASM regulates hypertrophy, hyperplasia via TPM1 and TPM4, and contractility

    Full text link
    ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21

    Interactive metagenomic visualization in a Web browser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables.</p> <p>Results</p> <p>Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools.</p> <p>Conclusions</p> <p>Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: <url>http://krona.sourceforge.net</url>.</p

    Improved Weighted Random Forest for Classification Problems

    Get PDF
    Several studies have shown that combining machine learning models in an appropriate way will introduce improvements in the individual predictions made by the base models. The key to make well-performing ensemble model is in the diversity of the base models. Of the most common solutions for introducing diversity into the decision trees are bagging and random forest. Bagging enhances the diversity by sampling with replacement and generating many training data sets, while random forest adds selecting a random number of features as well. This has made the random forest a winning candidate for many machine learning applications. However, assuming equal weights for all base decision trees does not seem reasonable as the randomization of sampling and input feature selection may lead to different levels of decision-making abilities across base decision trees. Therefore, we propose several algorithms that intend to modify the weighting strategy of regular random forest and consequently make better predictions. The designed weighting frameworks include optimal weighted random forest based on ac-curacy, optimal weighted random forest based on the area under the curve (AUC), performance-based weighted random forest, and several stacking-based weighted random forest models. The numerical results show that the proposed models are able to introduce significant improvements compared to regular random forest

    Reverse engineering synthetic antiviral amyloids

    Get PDF
    Human amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants. Some human amyloid proteins have been shown to interact with viral proteins, suggesting that they may have potential as therapeutic agents. Here the authors design synthetic amyloids specific for influenza A and Zika virus proteins, respectively, and show that they can inhibit viral replication

    Analysing the Impact of Machine Learning to Model Subjective Mental Workload: A Case Study in Third-Level Education

    Get PDF
    Mental workload measurement is a complex multidisciplinary research area that includes both the theoretical and practical development of models. These models are aimed at aggregating those factors, believed to shape mental workload, and their interaction, for the purpose of human performance prediction. In the literature, models are mainly theory-driven: their distinct development has been influenced by the beliefs and intuitions of individual scholars in the disciplines of Psychology and Human Factors. This work presents a novel research that aims at reversing this tendency. Specifically, it employs a selection of learning techniques, borrowed from machine learning, to induce models of mental workload from data, with no theoretical assumption or hypothesis. These models are subsequently compared against two well-known subjective measures of mental workload, namely the NASA Task Load Index and the Workload Profile. Findings show how these data-driven models are convergently valid and can explain overall perception of mental workload with a lower error

    Age-Dependent Ocular Dominance Plasticity in Adult Mice

    Get PDF
    Background: Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings: We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance: These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is mos

    Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    Get PDF
    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques

    The effectiveness of pulsed electrical stimulation (E-PES) in the management of osteoarthritis of the knee: a protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) of the knee is one of the main causes of musculoskeletal disability in the western world. Current available management options provide symptomatic relief (exercise and self-management, medication and surgery) but do not, in general, address the disease process itself. Moreover, adverse effects and complications with some of these interventions (medication and surgery) and the presence of co-morbidities commonly restrict their use. There is clearly a need to investigate treatments that are more widely applicable for symptom management and which may also directly address the disease process itself.</p> <p>In two randomised controlled trials of four and 12 weeks duration, pulsed electrical stimulation was shown to be effective in managing the symptoms of OA of the knee. Laboratory and animal studies demonstrate the capacity of externally applied electric and electromagnetic fields to positively affect chondrocyte proliferation and extracellular matrix protein production. This latter evidence provides strong theoretical support for the use of electrical stimulation to maintain and repair cartilage in the clinical setting and highlights its potential as a disease-modifying modality.</p> <p>Methods/Design</p> <p>A double-blind, randomised, placebo-controlled, repeated measures trial to examine the effectiveness of pulsed electrical stimulation in providing symptomatic relief for people with OA of the knee over 26 weeks.</p> <p>Seventy people will be recruited and information regarding age, gender, body mass index and medication use will be recorded. The population will be stratified for age, gender and baseline pain levels.</p> <p>Outcome measures will include pain (100 mm VAS and WOMAC 3.1), function (WOMAC 3.1), stiffness (WOMAC 3.1), patient global assessment (100 mm VAS) and quality of life (SF-36). These outcomes will be measured at baseline, four, 16 and 26 weeks. Activity levels will be measured at baseline and 16 weeks using accelerometers and the Human Activity Profile questionnaire. A patient global perceived effect scale (11-point Likert) will be completed at 16 and 26 weeks.</p> <p>Discussion</p> <p>This paper describes the protocol for a randomised, double-blind, placebo-controlled trial that will contribute to the evidence regarding the use of sub-sensory pulsed electrical stimulation in the management of OA of the knee.</p> <p>Trial registration</p> <p>Australian Clinical Trials Registry ACTRN12607000492459.</p
    • …
    corecore