23 research outputs found

    Effects of Salt Stress on Three Ecologically Distinct Plantago Species

    Full text link
    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus both halophytes and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600 800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.MAH was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium). AP acknowledges the Erasmus mobility programme for funding her stay in Valencia to carry out her Master Thesis.Al Hassan, M.; Pacurar, AM.; López Gresa, MP.; Donat Torres, MDP.; Llinares Palacios, JV.; Boscaiu Neagu, MT.; Vicente Meana, Ó. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE. 11(8):1-21. doi:10.1371/journal.pone.0160236S12111

    Enzyme Immobilization in a Photosensitive Conducting Polymer Bearing Azobenzene in the Main Chain

    No full text
    Abstract A new photosensitive and thermosensitive monomer, namely bis(4-(3- thienyl ethylene)-oxycarbonyl)diazobenzene (TDAZO), was synthesized. The photochemical and thermal cis–trans isomerization of the monomer has been investigated. The rate constants of the photoisomerization of TDAZO in ACN and DCM were 0.195 and 0.308 min-1, respectively. For spectroelectrochemical investigation and enzyme immobilization application, TDAZO copolymerized with thiophene and pyrrole. Electrochemical and spectroelectrochemical properties of P(TDAZO-co-Th) were investigated and invertase was immobilized in P(TDAZOco- Py) copolymer. Immobilization of enzymes was carried out by the entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole through thiophene moieties of the TDAZO. Optimum conditions for this electrode, such as pH, temperature, kinetic parameters (Km and Vmax) and operational stability were investigated. Kinetic parameters invertase-immobilized in copolymer were smaller than free enzyme. The optimum operational temperature was 10 C higher for immobilized enzyme than that of the free enzyme. Due to strong interaction between enzyme and diazo group in the polymer main chain, thermal, pH and operational stability of enzyme has been enhanced

    Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment

    No full text
    Organic solar cells based on P3HT:PCBM bulk heterojunction were prepared and subjected to post annealing at different temperatures (100, 120, 140, 160 and 180 °C). SEM, AFM as well as optical images have revealed that post deposition heat treatment has induced significant phase segregation between P3HT and PCBM which were found to result in growth of PCBM clusters on the films surface. The P3HT:PCBM absorption spectra were found to be blue shifted by 7 nm in films subjected to heat treatment at 160 °C and 180 °C. XRD data show a single diffraction peak at 2θ = 5.33 ± 0.23o for P3HT:PCBM films and was attributed to the edge-on arrangement of the (100) plane. Space charge limited conduction theory was employed to determine the charge carrier mobility; the highest obtained mobility was obtained for devices with active layers heat-treated at 140 °C. The change in the barrier height was derived from dark I–V. The variation in the metal–semiconductor contact between the Al electrode and P3HT:PCBM active layer were addressed and the barrier height has increased to form hole blocking contact and the ideality factor has decreased implying a decrease in the recombination rate. A direct relation between Fermi level, Vbi, and Voc was studied. Efficient device performance was ascribed to P3HT:PCBM layers which were subjected to post deposition heat treatment at 140 °C with PCE = 5.5 %, FF = 65.6 %, Jsc = 12.9 mA cm−2 and Voc = 0.65 V
    corecore