1,323 research outputs found

    Perinatal insults and neurodevelopmental disorders may impact Huntington's disease age of diagnosis

    Get PDF
    Introduction: The age of diagnosis of Huntington's disease (HD) varies among individuals with the same HTT CAG-repeat expansion size. We investigated whether early-life events, like perinatal insults or neurodevelopmental disorders, influence the diagnosis age. Methods: We used data from 13,856 participants from REGISTRY and Enroll-HD, two large international multicenter observational studies. Disease-free survival analyses of mutation carriers with an HTT CAG repeat expansion size above and including 36 were computed through Kaplan-Meier estimates of median time until an HD diagnosis. Comparisons between groups were computed using a Cox proportional hazard survival model adjusted for CAG-repeat expansion length. We also assessed whether the group effect depended on gender and the affected parent. Results: Insults in the perinatal period were associated with an earlier median age of diagnosis of 45.00 years (95%CI: 42.07–47.92) compared to 51.00 years (95%CI: 50.68–51.31) in the reference group, with a CAG-adjusted hazard ratio of 1.61 (95%CI: 1.26–2.06). Neurodevelopmental disorders were also associated with an earlier median age of diagnosis than the reference group of 47.00 years (95% CI: 43.38–50.62) with a CAG-adjusted hazard ratio of 1.42 (95%CI: 1.16–1.75). These associations did not change significantly with gender or affected parent. Conclusions: These results, derived from large observational datasets, show that perinatal insults and neurodevelopmental disorders are associated with earlier ages of diagnosis of magnitudes similar to the effects of known genetic modifiers of HD. Given their clear temporal separation, these early events may be causative of earlier HD onset, but further research is needed to prove causation

    Association of physical activity with physical function and quality of life in people with hip and knee osteoarthritis: longitudinal analysis of a population-based cohort

    Get PDF
    Hip and knee osteoarthritis (HKOA) is a chronic disease characterized by joint pain that leads to reduced physical function and health-related quality of life (HRQoL). At present, no cure is available. Clinical trials indicate that people with HKOA benefit from physical activity in several health-related outcomes. However, few studies have evaluated the long-term positive effect of regular physical activity. This study analyzed participants with HKOA from a nationwide population-based cohort (EpiDoC Cohort) to assess the impact of physical activity on patients' physical function and HRQoL over a long-term follow-up. The regular weekly frequency of intentional physical activity was self-reported as non-frequent (0 times/week), frequent (1-2 times/week), or very frequent (≥ 3 times/week). This study followed 1086 participants over a mean period of 4.7 ± 3.4 years, during which 6.3% and 14.9% of participants reported frequent and very frequent physical activity, respectively. Using linear mixed models, we found that frequent (β = - 0.101 [- 0.187, - 0.016]; β = 0.039 [- 0.002, 0.080]) and very frequent physical activity (β = - 0.061 [- 0.118, - 0.004]; β = 0.057 [0.029, 0.084]) were associated with improved physical function and HRQoL over time, respectively, when compared with non-frequent exercise, adjusting for years to baseline, sex, age, years of education, body mass index, multimorbidity, hospitalizations, clinical severity, and unmanageable pain levels. These findings raise awareness of the importance of maintaining exercise/physical activity long term to optimize HRQoL and physical function. Further studies must address barriers and facilitators to improve the adoption of regular physical activity among citizens with HKOA.info:eu-repo/semantics/publishedVersio

    Multiplicity of Positive Solutions for an Obstacle Problem in R

    Full text link
    In this paper we establish the existence of two positive solutions for the obstacle problem \displaystyle \int_{\Re}\left[u'(v-u)'+(1+\lambda V(x))u(v-u)\right] \geq \displaystyle \int_{\Re} f(u)(v-u), \forall v\in \Ka where ff is a continuous function verifying some technical conditions and \Ka is the convex set given by \Ka =\left\{v\in H^{1}(\Re); v \geq \varphi \right\}, with φH1()\varphi \in H^{1}(\Re) having nontrivial positive part with compact support in \Re. \vspace{0.2cm} \noindent \emph{2000 Mathematics Subject Classification} : 34B18, 35A15, 46E39. \noindent \emph{Key words}: Obstacle problem, Variational methods, Positive solutions.Comment: To appear in Progress in Nonlinear Differential Equations and their Application

    Perinatal insults and neurodevelopmental disorders may impact Huntington's disease age of diagnosis

    Get PDF
    INTRODUCTION: The age of diagnosis of Huntington's disease (HD) varies among individuals with the same HTT CAG repeat expansion size. We investigated whether early-life events, like perinatal insults or neurodevelopmental disorders, influence the diagnosis age. METHODS: We used data from 13,856 participants from REGISTRY and Enroll-HD, two large international multicenter observational studies. Disease-free survival analyses of mutation carriers with an HTT CAG repeat expansion size above and including 36 were computed through Kaplan-Meier estimates of median time until an HD diagnosis. Comparisons between groups were computed using a Cox proportional hazard survival model adjusted for CAG-repeat expansion length. We also assessed whether the group effect depended on gender and the affected parent. RESULTS: Insults in the perinatal period were associated with an earlier median age of diagnosis of 45.00 years (95%CI: 42.07–47.92) compared to 51.00 years (95%CI: 50.68–51.31) in the reference group, with a CAG-adjusted hazard ratio of 1.61 (95%CI: 1.26–2.06). Neurodevelopmental disorders were also associated with an earlier median age of diagnosis than the reference group of 47.00 years (95% CI: 43.38–50.62) with a CAG-adjusted hazard ratio of 1.42 (95%CI: 1.16–1.75). These associations did not change significantly with gender or affected parent. CONCLUSIONS: These results, derived from large observational datasets, show that perinatal insults and neurodevelopmental disorders are associated with earlier ages of diagnosis of magnitudes similar to the effects of known genetic modifiers of HD. Given their clear temporal separation, these early events may be causative of earlier HD onset, but further research is needed to prove causation

    A multidisciplinary treatment of congenitally missing maxillary lateral incisors: a 14-year follow-up case report

    Get PDF
    Absence of the maxillary lateral incisor creates an aesthetic problem which can be managed in various ways. The condition requires careful treatment planning and consideration of the options and outcomes following either space closure or prosthetic replacement. Recent developments in restorative dentistry have warranted a re-evaluation of the approach to this clinical situation. Factors relating both to the patient and the teeth, including the presentation of malocclusion and the effect on the occlusion must be considered. The objective of this study was to describe the etiology, prevalence and alternative treatment modalities for dental agenesis and to present a clinical case of agenesis of the maxillary lateral incisors treated by the closure of excessive spaces and canine re-anatomization. A clinical case is presented to illustrate the interdisciplinary approach between orthodontics and restorative dentistry for improved esthetic results. In this report, the treatment of a girl with a Class II malocclusion of molars and canines with missing maxillary lateral incisors and convex facial profile is shown. Treatment was successfully achieved and included the space closure of the areas corresponding to the missing upper lateral incisors, through movement of the canines and the posterior teeth to mesial by fixed appliances as well as the canines transformation in the maxillary lateral incisors. This is a 14-year follow-up case report involving orthodontics and restorative dentistry in which pretreatment, posttreatment, and long-term follow-up records for the patient are presented

    Inhibition of Dehydration-Induced Water Intake by Glucocorticoids Is Associated with Activation of Hypothalamic Natriuretic Peptide Receptor-A in Rat

    Get PDF
    Atrial natriuretic peptide (ANP) provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A), is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP) content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR) mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of water intake and revealed that the glucocorticoids can act centrally, as well as peripherally, to assist in the normalization of extracellular fluid volume

    Mitochondria and neuroplasticity

    Get PDF
    The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD+), and regulating subcellular Ca2+ and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke
    corecore