114 research outputs found
Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome
Due to spectral overlap, the number of fluorescent labels for imaging cryomicrotome detection was limited to 4. The aim of this study was to increase the separation of fluorescent labels. In the new imaging cryomicrotome, the sample is cut in slices of 40 μm. Six images are taken for each cutting plane. Correction for spectral overlap is based on linear combinations of fluorescent images. Locations of microspheres are determined by using the system point spread function. Five differently colored microspheres were injected in vivo distributed over two major coronaries, the left anterior descending and left circumflex artery. Under absence of collateral flow, microspheres outside of target perfusion territories were not found and the procedure did not generate false positive detection when spectral overlap was relevant. In silico-generated microspheres were used to test the effect of background image, transparency correction, and color separation. The percentage of microspheres undetected was 2.3 ± 0.8% in the presence and 1.5 ± 0.4% in the absence of background structures with a density of 900 microspheres per color per cm3. The image analysis method presented here, allows for an increased number of experimental conditions that can be investigated in studies of regional myocardial perfusion
Emerging infectious disease implications of invasive mammalian species : the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland
The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira
Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen
The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis
Invading and expanding : range dynamics and ecological consequences of the Greater White-Toothed Shrew (Crocidura russula) invasion in Ireland
Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation
biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007
and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus),
previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and
used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to
model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The
main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations
suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a
small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping
in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features
present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is
established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion
and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the
sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads
throughout the island
MIF Participates in Toxoplasma gondii-Induced Pathology Following Oral Infection
BACKGROUND: Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. METHODOLOGY/PRINCIPAL FINDINGS: Mif deficient (Mif(-/-)) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif(-/-) mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif(-/-) mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif(-/-) mice compared to wild-type mice. CONCLUSION/SIGNIFICANCE: In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death
Human malarial disease: a consequence of inflammatory cytokine release
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
- …