8,379 research outputs found

    A Linearly Constrained Nonparametric Framework for Imitation Learning

    Get PDF
    In recent years, a myriad of advanced results have been reported in the community of imitation learning, ranging from parametric to non-parametric, probabilistic to non-probabilistic and Bayesian to frequentist approaches. Meanwhile, ample applications (e.g., grasping tasks and humanrobot collaborations) further show the applicability of imitation learning in a wide range of domains. While numerous literature is dedicated to the learning of human skills in unconstrained environments, the problem of learning constrained motor skills, however, has not received equal attention. In fact, constrained skills exist widely in robotic systems. For instance, when a robot is demanded to write letters on a board, its end-effector trajectory must comply with the plane constraint from the board. In this paper, we propose linearly constrained kernelized movement primitives (LC-KMP) to tackle the problem of imitation learning with linear constraints. Specifically, we propose to exploit the probabilistic properties of multiple demonstrations, and subsequently incorporate them into a linearly constrained optimization problem, which finally leads to a non-parametric solution. In addition, a connection between our framework and the classical model predictive control is provided. Several examples including simulated writing and locomotion tasks are presented to show the effectiveness of our framework

    Towards Minimal Intervention Control with Competing Constraints

    Get PDF
    As many imitation learning algorithms focus on pure trajectory generation in either Cartesian space or joint space, the problem of considering competing trajectory constraints from both spaces still presents several challenges. In particular, when perturbations are applied to the robot, the underlying controller should take into account the importance of each space for the task execution, and compute the control effort accordingly. However, no such controller formulation exists. In this paper, we provide a minimal intervention control strategy that simultaneously addresses the problems of optimal control and competing constraints between Cartesian and joint spaces. In light of the inconsistency between Cartesian and joint constraints, we exploit the robot null space from an information-theory perspective so as to reduce the corresponding conflict. An optimal solution to the aforementioned controller is derived and furthermore a connection to the classical finite horizon linear quadratic regulator (LQR) is provided. Finally, a writing task in a simulated robot verifies the effectiveness of our approach

    Feature-Guided Black-Box Safety Testing of Deep Neural Networks

    Full text link
    Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc.) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural networks that requires no such knowledge. Our algorithm employs object detection techniques such as SIFT (Scale Invariant Feature Transform) to extract features from an image. These features are converted into a mutable saliency distribution, where high probability is assigned to pixels that affect the composition of the image with respect to the human visual system. We formulate the crafting of adversarial examples as a two-player turn-based stochastic game, where the first player's objective is to minimise the distance to an adversarial example by manipulating the features, and the second player can be cooperative, adversarial, or random. We show that, theoretically, the two-player game can con- verge to the optimal strategy, and that the optimal strategy represents a globally minimal adversarial image. For Lipschitz networks, we also identify conditions that provide safety guarantees that no adversarial examples exist. Using Monte Carlo tree search we gradually explore the game state space to search for adversarial examples. Our experiments show that, despite the black-box setting, manipulations guided by a perception-based saliency distribution are competitive with state-of-the-art methods that rely on white-box saliency matrices or sophisticated optimization procedures. Finally, we show how our method can be used to evaluate robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure

    Hybrid Probabilistic Trajectory Optimization Using Null-Space Exploration

    Get PDF
    In the context of learning from demonstration, human examples are usually imitated in either Cartesian or joint space. However, this treatment might result in undesired movement trajectories in either space. This is particularly important for motion skills such as striking, which typically imposes motion constraints in both spaces. In order to address this issue, we consider a probabilistic formulation of dynamic movement primitives, and apply it to adapt trajectories in Cartesian and joint spaces simultaneously. The probabilistic treatment allows the robot to capture the variability of multiple demonstrations and facilitates the mixture of trajectory constraints from both spaces. In addition to this proposed hybrid space learning, the robot often needs to consider additional constraints such as motion smoothness and joint limits. On the basis of Jacobian-based inverse kinematics, we propose to exploit robot null-space so as to unify trajectory constraints from Cartesian and joint spaces while satisfying additional constraints. Evaluations of hand-shaking and striking tasks carried out with a humanoid robot demonstrate the applicability of our approach

    Kernelized movement primitives

    Get PDF
    Imitation learning has been studied widely as a convenient way to transfer human skills to robots. This learning approach is aimed at extracting relevant motion patterns from human demonstrations and subsequently applying these patterns to different situations. Despite the many advancements that have been achieved, solutions for coping with unpredicted situations (e.g., obstacles and external perturbations) and high-dimensional inputs are still largely absent. In this paper, we propose a novel kernelized movement primitive (KMP), which allows the robot to adapt the learned motor skills and fulfill a variety of additional constraints arising over the course of a task. Specifically, KMP is capable of learning trajectories associated with high-dimensional inputs owing to the kernel treatment, which in turn renders a model with fewer open parameters in contrast to methods that rely on basis functions. Moreover, we extend our approach by exploiting local trajectory representations in different coordinate systems that describe the task at hand, endowing KMP with reliable extrapolation capabilities in broader domains. We apply KMP to the learning of time-driven trajectories as a special case, where a compact parametric representation describing a trajectory and its first-order derivative is utilized. In order to verify the effectiveness of our method, several examples of trajectory modulations and extrapolations associated with time inputs, as well as trajectory adaptations with high-dimensional inputs are provided

    Non-parametric Imitation Learning of Robot Motor Skills

    Get PDF
    Unstructured environments impose several challenges when robots are required to perform different tasks and adapt to unseen situations. In this context, a relevant problem arises: how can robots learn to perform various tasks and adapt to different conditions? A potential solution is to endow robots with learning capabilities. In this line, imitation learning emerges as an intuitive way to teach robots different motor skills. This learning approach typically mimics human demonstrations by extracting invariant motion patterns and subsequently applies these patterns to new situations. In this paper, we propose a novel kernel treatment of imitation learning, which endows the robot with imitative and adaptive capabilities. In particular, due to the kernel treatment, the proposed approach is capable of learning human skills associated with high-dimensional inputs. Furthermore, we study a new concept of correlation-adaptive imitation learning, which allows for the adaptation of correlations exhibited in high-dimensional demonstrated skills. Several toy examples and a collaborative task with a real robot are provided to verify the effectiveness of our approach

    Generalized Task-Parameterized Skill Learning

    Get PDF
    Programming by demonstration has recently gained much attention due to its user-friendly and natural way to transfer human skills to robots. In order to facilitate the learning of multiple demonstrations and meanwhile generalize to new situations, a task-parameterized Gaussian mixture model (TP-GMM) has been recently developed. This model has achieved reliable performance in areas such as human-robot collaboration and dual-arm manipulation. However, the crucial task frames and associated parameters in this learning framework are often set by the human teacher, which renders three problems that have not been addressed yet: (i) task frames are treated equally, without considering their individual importance, (ii) task parameters are defined without taking into account additional task constraints, such as robot joint limits and motion smoothness, and (iii) a fixed number of task frames are pre-defined regardless of whether some of them may be redundant or even irrelevant for the task at hand. In this paper, we generalize the task-parameterized learning by addressing the aforementioned problems. Moreover, we provide a novel learning perspective which allows the robot to refine and adapt previously learned skills in a low dimensional space. Several examples are studied in both simulated and real robotic systems, showing the applicability of our approach

    An Uncertainty-Aware Minimal Intervention Control Strategy Learned from Demonstrations

    Get PDF
    Motivated by the desire to have robots physically present in human environments, in recent years we have witnessed an emergence of different approaches for learning active compliance. Some of the most compelling solutions exploit a minimal intervention control principle, correcting deviations from a goal only when necessary, and among those who follow this concept, several probabilistic techniques have stood out from the rest. However, these approaches are prone to requiring several task demonstrations for proper gain estimation and to generating unpredictable robot motions in the face of uncertainty. Here we present a Programming by Demonstration approach for uncertainty-aware impedance regulation, aimed at making the robot compliant - and safe to interact with - when the uncertainty about its predicted actions is high. Moreover, we propose a data-efficient strategy, based on the energy observed during demonstrations, to achieve minimal intervention control, when the uncertainty is low. The approach is validated in an experimental scenario, where a human collaboratively moves an object with a 7-DoF torque-controlled robot

    Generalized Orientation Learning in Robot Task Space

    Get PDF
    In the context of imitation learning, several approaches have been developed so as to transfer human skills to robots, with demonstrations often represented in Cartesian or joint space. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. However, several crucial issues arising from learning orientations have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this paper, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-point and end-point), where both orientation and angular velocity are addressed. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations. Several examples including comparison with the state-of-the-art dynamic movement primitives are provided to verify the effectiveness of our method

    Towards Orientation Learning and Adaptation in Cartesian Space

    Get PDF
    As a promising branch of robotics, imitation learning emerges as an important way to transfer human skills to robots, where human demonstrations represented in Cartesian or joint spaces are utilized to estimate task/skill models that can be subsequently generalized to new situations. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. Despite recent advances in learning orientations from demonstrations, several crucial issues have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this article, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-points and end-points), where both orientation and angular velocity are considered. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations, which allows for learning orientation trajectories associated with high-dimensional inputs. In addition, we extend our approach to the learning of quaternions with angular acceleration or jerk constraints, which allows for generating smoother orientation profiles for robots. Several examples including experiments with real 7-DoF robot arms are provided to verify the effectiveness of our method
    • …
    corecore