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Non-parametric Imitation Learning of Robot Motor Skills

Yanlong Huang1, Leonel Rozo2, João Silvério1, and Darwin G. Caldwell1

Abstract— Unstructured environments impose several chal-
lenges when robots are required to perform different tasks
and adapt to unseen situations. In this context, a relevant
problem arises: how can robots learn to perform various
tasks and adapt to different conditions? A potential solution
is to endow robots with learning capabilities. In this line,
imitation learning emerges as an intuitive way to teach robots
different motor skills. This learning approach typically mimics
human demonstrations by extracting invariant motion patterns
and subsequently applies these patterns to new situations. In
this paper, we propose a novel kernel treatment of imitation
learning, which endows the robot with imitative and adaptive
capabilities. In particular, due to the kernel treatment, the pro-
posed approach is capable of learning human skills associated
with high-dimensional inputs. Furthermore, we study a new
concept of correlation-adaptive imitation learning, which allows
for the adaptation of correlations exhibited in high-dimensional
demonstrated skills. Several toy examples and a collaborative
task with a real robot are provided to verify the effectiveness
of our approach.

I. INTRODUCTION

From the perspective of trajectory generation, various

robot skills can be accomplished by generating proper trajec-

tories in either task or joint spaces. Trajectory generation for

robots can be tackled from an imitation learning perspective

[1], [2], [3], [4], [5], [6], where the robot learns the trajectory

of interest from human demonstrations. Typically, the learned

trajectories can be reproduced by the robot under conditions

that are similar to those in which the demonstrations took

place. However, the robot may also encounter unseen situa-

tions, such as obstacles and human intervention, which can

be considered as new constraints of the task, requiring the

robot to adapt its trajectory online to perform satisfactorily.

Besides, unlike time-driven skills, many scenarios such as

robot bi-manual operation and human-robot collaboration are

often associated with high-dimensional inputs, which in turn

increases the difficulties of robot skill learning and adaptation

due to the complexity of input signals.

In order to make the imitation and adaptation of hu-

man skills feasible, many approaches have been developed,

such as dynamic movement primitives (DMP) [2], Gaussian

mixture model (GMM) [4], and probabilistic movement

primitives (ProMP) [7]. Due to an explicit description of the

trajectory dynamics, DMP introduces many open parameters

in addition to basis functions and their weighting coefficients.

Similarly, ProMP demands for a set of manually defined
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basis functions. Differing from DMP and ProMP, GMM has

been employed to model the distribution of human demon-

strations, which is exploited to retrieve desired trajectories

through Gaussian mixture regression (GMR) [8]. Regarding

robot adaptation, DMP is capable of generalizing trajectories

towards new end-points while adaptation to varying via-

points and velocity constraints are overlooked. ProMP for-

mulates the modulation of trajectories as a Gaussian condi-

tioning problem, and therefore provides an analytical solution

to adapt trajectories towards new via-points or targets. The

standard GMM/GMR framework does not offer adaptation

features. A possible way to enhance the adaptation ability of

DMP and GMM is using reinforcement learning (RL) [9],

[10]. For instance, weighting exploration with returns [10]

was employed to optimize the movement pattern of DMP.

However, the model parameters of GMM commonly lie in

a high-dimensional space (i.e., mixture coefficients, means

and covariance matrices), and hence the re-optimization of

GMM towards new requirements (e.g., via-points) is difficult.

The same problem arises in DMP when the number of basis

functions is large. In addition, the time-consuming learning

process of RL might render the online adaptation impractical.

It is noteworthy that both DMP and ProMP are developed

to learn time-driven skills, namely, demonstrated trajecto-

ries that depend on time. When we consider applications

with high-dimensional inputs (e.g., human hand positions in

human-robot collaboration), DMP and ProMP become less

effective since a large number of basis functions are required

to encapsulate the features of high-dimensional inputs, which

is often referred to as the curse of dimensionality [11]. In this

paper, we attempt to provide an alternative solution, which

not only preserves the probabilistic properties exhibited

in multiple demonstrations, but also deals with trajectory

adaptations. More specifically, we aim to address the learning

and adaption of demonstrated skills associated with high-

dimensional inputs. Key features of our solution and the

state-of-the-art methods are summarized in Table I.

Inspired by the kernel ridge regression (KRR) [12], [13]

and its variant with a diagonal weighted scheme [14], [15],

[16], we propose a novel kernelized skill learning approach

that allows robots to learn probabilistic properties of multiple

demonstrations (Section II-B), as well as modulate trajecto-

ries (Section II-C) when new task constraints arise on the fly

(such as via-points or new target locations). The proposed

solution is built on the well-established regression theory,

rendering fewer open parameters and easy implementation.

Furthermore, we study a new concept of correlation-adaptive

imitation learning in Section II-D. With this new scheme, the

coupling between high-dimensional motion variables can be



TABLE I

COMPARISON AMONG THE STATE-OF-THE-ART AND OUR APPROACH

DMP ProMP GMM Our Approach

Probabilistic - X X X

V ia−point - X - X

End−point X X - X

High-dim Inputs - - X X

enforced or relaxed, allowing for a more flexible trajectory

generation in terms of additional objective functions. We test

the proposed kernelized approach in Section III, and discuss

the related work in Section IV. Finally, we conclude our

work in Section V.

II. NON-PARAMETRIC IMITATIVE SKILL LEARNING

In the context of imitation learning, an important observa-

tion is that the teacher often demonstrates skills differently

even for the same task. Hence, the variability among demon-

strations could be helpful as it encapsulates the important or

consistent features of trajectories [17]. We first exploit the

probabilistic properties from multiple human demonstrations

(Section II-A), resulting in a trajectory distribution that we

use to derive the non-parametric skill learning approach

which we refer to as kernelized movement primitives (KMP)

(Section II-B). Subsequently, on the basis of this approach,

we study the trajectory adaptation (Section II-C) and the

correlation-adaptive imitation learning (Section II-D).

A. Probabilistic Modeling of Demonstrated Skills

Assuming that we can access a set of demonstrated train-

ing data {{sn,h, ξn,h}
N
n=1}

H
h=1

, where sn,h ∈ R
I is the input

and ξn,h ∈ R
O denotes the output1. Here, the super-indexes

I, O, H and N respectively represent the dimensionality of

the input and output space, the number of demonstrations,

and the trajectory length. In order to capture the probabilistic

distribution of demonstrations, a number of algorithms can

be employed, such as GMM [4], hidden Markov models

[18] and kernel density estimation [19]. Let us take GMM

as an example and employ it to encode the training data.

More specifically, GMM is employed to estimate the joint

probability distribution P(s, ξ) from demonstrations, i.e.,

{s, ξ} ∼
∑

l πlN (µl,Σl), where πl, µl and Σl respectively

correspond to the prior probability, mean and covariance of

the l-th Gaussian component. Furthermore, a probabilistic

reference trajectory {ξ̂n}
N
n=1 can be retrieved via GMR,

where each point ξ̂n (associated with sn) is described by

a conditional probability distribution ξ̂n|sn ∼ N (µ̂n, Σ̂n)
with mean µ̂n and covariance Σ̂n. This reference trajectory

encapsulates the variability of demonstrations as well as the

correlations among outputs.

For the sake of convenient description, we denote D =
{sn, µ̂n, Σ̂n}

N
n=1 as the reference database. In this paper,

1Note that the input s and output ξ can represent different types of
variables. For instance, by considering s as the position of the robot and ξ as
its velocity, the representation becomes an autonomous system formulation
[4]. Alternatively, if s and ξ respectively represent time and position, the
resulting encoding corresponds to a time-driven trajectory [7].

we exploit the probabilistic reference trajectory {ξ̂n}
N
n=1 to

derive KMP, whose formulation can be further used for mod-

ulating trajectories (Section II-C) and adapting correlations

among high-dimensional motion variables (Section II-D).

B. Kernelized Skill Learning

Let us consider a parametric trajectory

ξ(s) = Θ(s)⊤w (1)

with the basis function matrix Θ(s) ∈ R
BO×O defined by

Θ(s) =




ϕ(s) 0 · · · 0

0 ϕ(s) · · · 0
...

...
. . .

...

0 0 · · · ϕ(s)


 , (2)

and the weight vector w ∈ R
BO, where ϕ(s) ∈ R

B is a B-

dimensional vector of basis functions. In order to incorporate

the probabilistic reference trajectory (described in Section II-

A) into this parametric representation, we propose to find a

weight vector w such that {Θ(sn)
⊤w}Nn=1 coincides with

the reference database D. This problem can be formulated

as maximizing the posterior

Jp(w) =
N∏

n=1

P(Θ(sn)
⊤w|µ̂n, Σ̂n). (3)

Furthermore, by taking the logarithm of the posterior,

this maximization (with respect to w) is equivalent to

minimizing a weighted sum of squared errors given by∑N

n=1
(Θ(sn)

⊤w − µ̂n)
⊤Σ̂

−1

n (Θ(sn)
⊤w − µ̂n). In order

to circumvent the over-fitting arising in this process, we

introduce a penalty term ||w||. Thus, the resulting cost

function to be minimized is

J(w)=

N∑

n=1

(Θ(sn)
⊤w−µ̂n)

⊤Σ̂
−1

n (Θ(sn)
⊤w−µ̂n)+λw⊤w,

(4)

where λ > 0. This cost function shares the same formula

with weighted least squares, except for the penalty term

λw⊤w. Also, it is similar to the common quadratic loss func-

tion minimized in KRR [12], [13], where Σ̂
−1

n = IO with

IO representing the O-dimensional identity matrix. However,

we here exploit the variability of the demonstrations encapsu-

lated in Σ̂n as an importance measure associated with each

trajectory datapoint, which can be understood as relaxing

or reinforcing the optimization for a particular datapoint. In

other words, this variance-weighted cost function permits

large deviations from the reference trajectory points with

high variances, while demanding to be close when their

associated variances are low. Note that similar variance-

weighted strategies were studied in trajectory-GMM [4],

linear quadratic regulators [20] and movement similarity

criterion [21].

Through the dual transformation of KRR [12], [13], [16],

the optimal solution ŵ of (4) can be obtained, and subse-

quently for a new input s∗ its corresponding output can be



written as

ξ(s∗) = Θ(s∗)⊤ŵ = Θ(s∗)⊤Φ(Φ⊤Φ+ λΣ)−1µ, (5)

where
Φ = [Θ(s1)Θ(s2) · · · Θ(sN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂⊤

N ]⊤.

(6)

Now, let us introduce the kernel function k(·, ·) and define

ϕ(si)
⊤ϕ(sj) = k(si, sj). Then, we have

k(si, sj) = Θ(si)
⊤Θ(sj) = k(si, sj)IO. (7)

Also, let us denote the matrix K with its block-component

at i-th row and j-th column as k(si, sj), then the prediction

in (5) can be rewritten as

ξ(s∗) =
N∑

i

k(s∗, si)αi, (8)

where αi ∈ R
O is the i-th component of the block matrix

α = [α⊤

1 α
⊤

2 · · · α⊤

N ]⊤ = (K+ λΣ)−1µ. (9)

Note that the prediction described by (8) shares similarities

with Gaussian process regression (GPR) [22], Heteroscedas-

tic Gaussian processes (HGP) [14], [15] and cost regularized

kernel regression (CrKR) [16]. If we replace Σ̂n in (4) by an

identity matrix, the prediction (8) will become the estimated

mean of GPR. Furthermore, if we use a diagonal weight

matrix Σ̂n = cnIO instead, (8) is equivalent to the mean

prediction of HGP and CrKR. However, all these approaches

are derived in different contexts and thus have different

application scenarios. Specifically, GPR, HGP and CrKR

modeled target components separately without considering

their correlations.

C. Trajectory Adaptation Using Kernelized Learning

While learning from demonstrations allows for accom-

plishing a specific task in the sense of reproduction, the

adaptation ability is also pivotal, e.g., in dynamic and un-

structured environments, where the robot needs to adapt

its motions according to the external stimulus. To illustrate

the importance of skill adaptation, let us consider a simple

example: when an obstacle suddenly occupies an area that

intersects the planned robot trajectory, the robot is therefore

required to modulate its movement trajectory so as to avoid

all the possible collisions. A similar modulation is necessary

when the target location is varied over the course of the task.

We here tackle the problem of adapting trajectories to pass

through new via-points/end-points by updating the reference

database D = {sn, µ̂n, Σ̂n}
N
n=1 used in (4) with the new

desired points. More specifically, given M desired points

{s̄m, ξ̄m}Mm=1 defined by conditional probability distribu-

tions2 ξ̄m|s̄m ∼ N (µ̄m, Σ̄m), we can transform the imi-

tation learning and trajectory adaptation into the problem of

2The distributions of desired points can be designed based on the new task
requirements. For instance, for new via-points that the robot need to pass
through precisely, small variances are assigned. On the contrary, via-points
that allow for tracking errors, high variances can be defined.

Algorithm 1 Kernelized Trajectory Adaptation

1: Initialization

- Define the kernel k(·, ·) and set the factor λ.

- Set desired points {s̄m, µ̄m, Σ̄m}Mm=1.

2: Extract reference database (see Section II-A)

- Collect demonstrations {{sn,h, ξn,h}
N
n=1}

H
h=1

.

- Extract the reference database D = {sn, µ̂n, Σ̂n}
N
n=1.

3: Incorporate desired points (see Section II-C)

- Update D using desired points {s̄m, µ̄m, Σ̄m}Mm=1.

4: Trajectory prediction (see Section II-B)

- Input: query s∗.

- Output: ξ(s∗) =
∑N

i k(s∗, si)αi

minimizing

J(w) =
N+M∑

i=1

(Θ(s̃i)
⊤w−µ̃i)

⊤Σ̃
−1

i (Θ(s̃i)
⊤w−µ̃i)+λw⊤w,

(10)

where {s̃i = si, µ̃i = µ̂i, Σ̃i = Σ̂i}, ∀i ∈ {1, 2, . . . , N},
and {s̃i = s̄i−N , µ̃i = µ̄i−N , Σ̃i = Σ̄i−N}, ∀i ∈ {N +
1, N + 2, . . . , N +M}. This new optimization problem es-

sentially corresponds to the learning of an extended reference

trajectory that consists of the original reference trajectory and

various desired points. Similarly, it can be solved analyti-

cally, through (4)-(8). An algorithm of trajectory adaptation

by using our approach is provided in Algorithm 1.

Note that conflicts might arise between the original refer-

ence database and the new desired points. Let us consider an

extreme case: if s̄m = sn but µ̄m is far away from µ̂n while

Σ̄m = Σ̂n, the resulting trajectory at the query point sn
would be a trade-off between µ̄m and µ̂n, which hence fails

to achieve our goal of trajectory adaptation. An alternative

solution is to compare the similarities between the input

variables {s̄m}Mm=1 with the inputs {sn}
N
n=1 of the reference

database D. For each s̄m, if the distance between s̄m and its

corresponding nearest input sn is smaller than a predefined

threshold, we replace {sn, µ̂n, Σ̂n} in the reference database

with {s̄m, µ̄m, Σ̄m}; otherwise, we insert {s̄m, µ̄m, Σ̄m}
into the reference database.

D. Correlation-adaptive Imitation Using Kernelized Learn-

ing

As done in (4), full covariance matrices {Σ̂n}
N
n=1 (ex-

tracted from demonstrations) are employed in the optimiza-

tion problem. These covariance matrices encode the corre-

lation constraints between various motion variables. How-

ever, some inappropriate (e.g., too strong/weak) correlation

constraints exhibited in the demonstrations might degrade

the overall performance of the robot. Let us consider strong

covariance matrices applied to a robot manipulation task

with multiple joints: if a certain joint is suddenly damaged

or perturbed, the movement of other joints will also be

influenced heavily due to the strong constraints imposed by

the covariance matrix. On the contrary, if the covariance

matrices (i.e., correlations) are weak, the resulting trajectory

might fail to resemble the demonstrated skills when external



perturbations are applied. Thus, a natural problem arises:

can we relax or enforce the correlations among (the high-

dimensional) motor variables so as to address unpredicted

conditions or meet additional objectives?

Formally, we formulate the correlation-adaptive imitation

learning as the problem of optimizing a diagonal matrix

function Λ(s). To do so, we first reformulate our cost

function (4) as follows

J(w;Λ(·))=
N∑

n=1

(Θ(sn)
⊤w−µ̂n)

⊤(Λ(sn)
⊤Σ̂nΛ(sn))

−1

(Θ(sn)
⊤w − µ̂n) + λw⊤w,

(11)

which now includes Λ(·) as a term to adapt the corre-

lation patterns of learned motor skills. For a given value

of Λ(·), this new objective function is first optimized as

explained before (imitation/adaptation step), but now an

additional objective f({ξ(s∗n)}
N
n=1) needs to be fulfilled3,

where {s∗n}
N
n=1 represents a sequence of new inquiries. We

define a reward function R(Λ(·)) to measure how well Λ(·)
performs in terms of the objective function f . Thus, the

correlation-adaptive imitation learning problem can be solved

by finding Λ(·) to maximize the reward R(Λ(·)), and accord-

ingly many state-of-the-art RL algorithms can be used [23],

[24]. Finally, the demonstrated covariance {Σ̂n}
N
n=1 can be

adjusted by {Λ(sn)
⊤Σ̂nΛ(sn)}

N
n=1, namely, the adaptation

of correlations among the high-dimensional motor variables

is accomplished. Therefore, the whole optimization process

may be viewed as a first imitation/adaptation phase followed

by a second model-free reinforcement learning phase.

III. EVALUATIONS OF THE APPROACH

In this section, several examples of trajectory modulations

and covariance adaptation are used to evaluate KMP. We first

consider adapting trajectories to start-points/via-points/end-

points (Section III-A). Then, we present an example (Sec-

tion III-B) to illustrate the correlation-adaptive imitation

learning. Finally, we carry out a collaborative hand task asso-

ciated with a 6-D input on a real robot platform (Section III-

C). More comprehensive evaluations of KMP can be found in

our pre-print [17]. In the following evaluations, the Gaussian

kernel k(si, sj)=exp(−ℓ||si−sj ||
2) with ℓ>0 is used.

A. Trajectory Modulation Examples

We study the trajectory adaptations on different 2-D hand-

written letters. For each letter, five demonstrations compris-

ing time t (i.e., input) and Cartesian position [x(t) y(t)]⊤

(i.e., output) are used to train a GMM (first column in

Fig. 1), and subsequently a probabilistic reference trajectory

is retrieved by GMR. This reference trajectory is used to

initialize KMP. The relevant hyper-parameters are ℓ = 8 and

λ = 0.1. Figure 1 displays different trajectory modulation

cases using our approach, showing that our approach suc-

cessfully modifies the original reference trajectory to pass

through various desired points (depicted by circles). For the

3This new objective function f(·) could, for instance, encompass move-
ment smoothness and/or robot joint limits.

Fig. 1. Trajectory modulations using KMP on hand-written letters. First

column shows the demonstrations of various hand-written letters and their
corresponding GMM modeling, where the red solid ellipses represent
Gaussian components. Second−fourth columns show the adapted trajectories
(red solid lines) with different desired points (purple circles). The dashed
gray curves depict the original reference trajectories, obtained as explained
in Section II-A.

Fig. 2. Comparison of trajectory modulations by using KMP (red curves)
and ProMP (blue curves), where circles denote desired points

sake of comparison, ProMP is also used as shown in Fig. 2.

Note that even though ProMP performs similarly to our

approach in the case of learning time-driven trajectories, its

extension to learn trajectories with high-dimensional inputs

becomes cumbersome due to the explicit definition of large

number of basis functions. In contrast, our approach relies

on the kernel instead of basis functions, allowing for learning

demonstrations with high-dimensional input conveniently

(see Section III-C).

B. Correlation-adaptive Imitation Learning Example

In this example, we consider the learning of 3-D trajecto-

ries ‘D’ using a simulated Barrett WAM robot, where four

demonstrated trajectories are recorded, composed of time t

(i.e., input) and Cartesian position ξ(t) = [x(t) y(t) z(t)]⊤

(i.e., output), as shown in Fig. 3(a). Similarly to Section III-

A, we use GMM to fit the demonstrations, and then extract

the probabilistic reference trajectory so as to initialize KMP,

where the hyperparameters are ℓ = 0.1 and λ = 2. We define

the reward as a function of a weighted joint smoothness.

Specifically, we use Jacobian-based inverse kinematics to

determine the corresponding joint trajectory, i.e., q̂t+1 =

qt+J(qt)
†(ξt+1−ξt), where J† =J⊤(JJ⊤)−1 with J being

Jacobian matrix, qt and q̂t+1 respectively denote the current

joint position at time t and the desired joint position at time

t+1. The reward is defined as R=exp(−γC), where γ = 5



(a) (b) (c)

Fig. 3. Evaluation of the correlation-adaptive imitation learning. (a) shows the fitting of demonstrated letters ‘D’ through GMM, where ellipsoids denote
Gaussian components. (b) depicts the evolved process of adapted Cartesian trajectories (solid curves) with the color from light to dark showing the learning
direction, where the circle denotes the desired via-point, ‘∗’ and ‘+’ respectively represent the starting and ending points of trajectories. The dashed curve
corresponds to the original reference trajectory. (c) shows the error-bar curve of the cost values over 10 runs.

and C =
∑N−1

t=1
||W

1

2 (qt+1−qt)|| represents the cost of

weighted joint smoothness with the weight matrix W > 0.

Note that we also introduce a via-point constraint in

this example. Namely, the resulting Cartesian trajectory

should pass through a desired via-point and meanwhile its

corresponding reward (defined in joint space) should be

maximized. In order to find the optimal matrix function

Λ(·), we apply the policy improvement with path integrals

algorithm with constant exploration [23], where we formulate

Λ(t) = φ(t)⊤θ using a fixed Gaussian basis function matrix

φ(t) and the policy parameter θ that needs to be learned.

The evolved Cartesian trajectory is shown in Fig. 3(b) (solid

curves), where the color from light to dark depicts the

learning process. It can be seen that all the adapted Cartesian

trajectories indeed pass through the desired via-point. The

statistical analysis of cost values over 10 runs are plotted

in Fig. 3(c), showing that the correlation adaptation indeed

improves the weighted joint smoothness.

C. Collaborative Hand Task

Differing from learning various time-driven trajectories,

we now consider a different task which requires a 6-D input,

in particular a robot-assisted soldering scenario. As shown

in Fig. 4, the task proceeds as follows: (1) the robot needs to

hand over a circuit board to the user at the handover location

ph (Fig. 4(b)), where the user left-hand is used. (2) the user

moves his left hand to place the circuit board at the soldering

location ps and simultaneously moves his right hand towards

the soldering iron and then grasps it. Meanwhile, the robot

is required to move towards the magnifying glass and grasp

it at the magnifying glass location pg (Fig. 4(c)). (3) the

user moves his right hand to the soldering location so as

to repair the circuit board. Meanwhile, the robot, holding

the magnifying glass, moves towards the soldering place in

order to allow the user to take a better look at the small

components of the board (Fig. 4(d)).

Let us denote pHl , pHr and pR as positions of the user

left hand, right hand and robot end-effector (i.e., the “col-

laborative hand”), respectively. Since the robot is required

to react properly according to the user hand positions, we

formulate the collaborative hand task as the prediction of

the robot end-effector position according to the user hand

positions (where time is not involved). In other words,

in the prediction problem we consider s = {pHl ,pHr} as

the input (6-D) and ξ(s) = pR as the output (3-D).

Following the procedure illustrated in Fig. 4, we collect

five demonstrations comprising {pHl,pHr,pR} for training

KMP, as shown in Fig. 5 (a). Note that the teacher only gets

involved in the training phase. We fit the collected data using

GMM, and subsequently extract a probabilistic reference

trajectory using GMR, where the input for the probabilistic

reference trajectory is sampled from the marginal probability

distribution P(s), since in this scenario the exact input

is unknown (unlike time t in previous experiments). The

relevant hyperparameters are set to ℓ = 0.5 and λ = 2.

Two evaluations are carried out to evaluate KMP in this

scenario. First, we employ the learned reference database

without adaptation so as to verify the reproduction ability

of our approach. The user left- and right-hand trajectories

as well as the real robot trajectory are plotted in Fig. 5 (b)

(dotted curves), where the desired trajectory for robot end-

effector is generated by our method. We can observe that the

proposed method maintains the shape of the demonstrated

trajectories for the robot while accomplishing the soldering

task. Second, we evaluate the adaptation capability of KMP

by varying the handover location ph, the magnifying glass

location pg as well as the soldering location ps. Note that

these new locations are unseen in the demonstrations, thus

we consider them as new via-point/end-point constraints. To

take the handover as an example, we can define a via-point

(associated with input) as {p̄Hl

1 , p̄Hr

1 , p̄R
1 }, where p̄

Hl

1 =
ph, p̄Hr

1 = pHr

ini and p̄R
1 = ph, which implies that the

robot should reach the new handover location ph when

the user left hand arrives at ph and the user right hand

stays at its initial position pHr

ini . Similarly, we can define

additional via- and end-points to ensure that the robot grasps

the magnifying glass at a new location pg and assists the

user at a new location ps. Thus, two via-points and one

end-point are used to update the original reference database

so as to address the three adaptation situations. Figure 5 (b)

shows the adaptations of the robot trajectory (green solid

curve) in accordance with the user hand trajectories (red and

blue solid curves). It can be seen that the robot trajectory

is indeed modulated towards the new handover, magnifying



Fig. 4. The collaborative hand task in the soldering environment with the Barrett WAM robot. (a) shows the initial state of the user hands and the
robot end-effector (i.e., the collaborative hand in this experiment). 1©– 4© separately correspond to the circuit board (held by the robot), magnifying glass,
soldering iron and solder. (b) corresponds to the handover of the circuit board. (c) shows the robot grasping of the magnifying glass. (d) depicts the final
scenario of the soldering task using both of the user hands and the robot end-effector. Red, blue and green arrows depict the movement directions of the
user left hand, right hand and the robot end-effector, respectively.

(a) (b)

Fig. 5. Evaluations of the collaborative hand task. (a) shows demon-
strations for the collaborative hand task, where the red and blue curves
respectively correspond to the user left and right hands, while the green
curves represent the demonstrated trajectories for the robot. The ‘∗’ and
‘+’ mark the starting and ending points of various trajectories, respectively.
(b) depicts the reproduction (dotted curves) and adaptation (solid curves)
capabilities of our approach, where the user left-hand and right-hand
trajectories (red and blue curves) are used to predict the robot end-effector
trajectory (green curves).

glass and soldering locations, showing the capability of the

proposed approach to adapt trajectories associated with high-

dimensional inputs.

Note that the entire soldering task is accomplished with-

out any trajectory segmentation for different subtasks, thus

allowing for a straightforward learning of several sequential

subtasks. Moreover, our approach makes the adaptation of

learned skills associated with high-dimensional inputs fea-

sible. Also, the fact that the learned KMP is driven by the

user hand positions, allows for slower/faster hand movements

since the prediction of KMP does not depend on time, hence

alleviating the typical problems of time-alignment and phase-

estimation in human-robot collaborations [25], [26], [27].

IV. DISCUSSION

We here first compare KMP and ProMP [7]. For KMP, the

joint distribution P(s, ξ) is first estimated from demonstra-

tions, and subsequently a probabilistic reference trajectory

{ξ̂n}
N
n=1 with distribution ξ̂n|sn∼N (µ̂n, Σ̂n) is retrieved.

The imitation learning is formulated as an optimization

problem (as described in (4)) where an optimal w is derived,

which maximizes the posterior
∏N

n=1
P(Θ(sn)

⊤w|µ̂n, Σ̂n).
In contrast, ProMP estimates the distribution over weights

P(w), i.e., w∼N (µw,Σw), which maximizes the likeli-

hood
∏H

h=1

∏N

n=1
P(ξn,h|Θ(sn,h)

⊤µw,Θ(sn,h)
⊤ΣwΘ(sn,h)).

Then, the optimal distribution of w described by its mean

µw and variance Σw is found. To solve this maximization

problem for ProMP, for each demonstration regularized least-

squares can be used to estimate its movement pattern vector

w [28], where basis functions are used to fit these demon-

strations. Subsequently, with movement patterns from all

demonstrations, the distribution P(w) is estimated. A direct

problem in ProMP comes up with fixed basis functions,

which suffers from the curse of dimensionality. In contrast,

our approach is combined with a kernel function, alleviating

the need for basis functions. The other problem in ProMP is

the estimation of P(w). If the dimension of w (i.e., BO) is

too large compared to the number of demonstrations H , the

estimated covariance Σw may be singular. In contrast, our

approach needs a probabilistic reference trajectory, which is

derived from the probability distribution of {s, ξ} that has a

lower dimension (i.e., I +O).

Other related works were reported in [29], [30], where im-

itation learning and motion planning were formulated into a

single framework and the entire sequence of trajectory points

was determined from an optimization perspective. However,

this kind of optimization may become inefficient when the

trajectory length is quite large. Moreover, as pointed out in

[31], [32], an additional interpolation is often required since

the query points might be different from the predefined ones.

Specifically, in comparison with our work, both [29] and [30]

focus on learning time-driven trajectories without addressing

the problem of learning trajectories associated with high-

dimensional inputs.

V. CONCLUSIONS

We have shown a novel non-parametric imitation learning

approach and its applications in trajectory modulations. Also,

we studied a new concept of correlation-adaptive imitation

learning, allowing for the adaptation of correlations among

demonstrated high-dimensional motion variables, given ad-

ditional performance requirements. Since our approach em-

ploys the kernel treatment instead of the explicit basis

functions, it enables the convenient extension to the learning

of complex and high-dimensional trajectories. In the future,

we plan to apply our approach to the concurrent imitation

learning in Cartesian space and joint space [33], [34].
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[16] J. Kober, E. Öztop and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in Proc. International Joint

Conference on Artificial Intelligence, 2011, pp. 2650-2655.
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