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Hybrid Probabilistic Trajectory Optimization Using

Null-Space Exploration

Yanlong Huang, João Silvério, Leonel Rozo, and Darwin G. Caldwell

Abstract— In the context of learning from demonstration, hu-
man examples are usually imitated in either Cartesian or joint
space. However, this treatment might result in undesired move-
ment trajectories in either space. This is particularly important
for motion skills such as striking, which typically imposes
motion constraints in both spaces. In order to address this issue,
we consider a probabilistic formulation of dynamic movement
primitives, and apply it to adapt trajectories in Cartesian and
joint spaces simultaneously. The probabilistic treatment allows
the robot to capture the variability of multiple demonstrations
and facilitates the mixture of trajectory constraints from both
spaces. In addition to this proposed hybrid space learning, the
robot often needs to consider additional constraints such as
motion smoothness and joint limits. On the basis of Jacobian-
based inverse kinematics, we propose to exploit robot null-space
so as to unify trajectory constraints from Cartesian and joint
spaces while satisfying additional constraints. Evaluations of
hand-shaking and striking tasks carried out with a humanoid
robot demonstrate the applicability of our approach.

I. INTRODUCTION

Imitation learning, also known as Learning from Demon-

stration, is an approach to easily teach robot various skills

[1]. Depending on the specific task requirements and human

interpretation of tasks, imitation learning can be carried out

in either joint [2] or Cartesian space [3]. While imitation

learning in a single space has achieved reliable performance,

the simultaneous learning of skills in both spaces (which we

refer to as hybrid space learning) has not been sufficiently

investigated yet. In order to illustrate the importance of this

hybrid approach, let us consider a robot table tennis task

[4], where a racket is attached to the end-effector of an an-

thropomorphic robot arm. The preliminary goal is to control

the racket (being held by the robot end-effector) so as to

return the ball towards the human opponent side. In this case,

imitation learning in the robot Cartesian space (i.e., learning

of racket trajectory) is crucial. However, in order to mimic

the human striking movement in joint space, we still need

to take the robot posture into account, which is explicitly

determined by the joint trajectories and their correlations.

Besides the aforementioned scenario, other applications such

as robot grasping task [5] and dual-arm manipulation [6] also

demonstrated the advantages of hybrid space learning.

In this paper, we address the imitation learning in both

Cartesian and joint spaces, where the probabilistic treatment

of dynamic movement primitive (DMP) proposed in [3], [7]

is exploited. The probabilistic DMP essentially integrates the
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Fig. 1. Illustrations of hand-shaking (left graph) and striking tasks (right

graph), where movements in both Cartesian and joint spaces are relevant.

DMP stability property and the probabilistic encoding of

Gaussian mixture model (GMM). In contrast to the classical

DMP [8] that models the forcing term as an explicit function

of the phase variable using basis functions, the probabilistic

DMP models the joint probability distribution of the phase

variable and forcing term using GMM, and subsequently

retrieves a desired forcing term using Gaussian mixture

regression (GMR). Therefore, this approach encapsulates the

consistent features underlying multiple demonstrations as

well as the correlations between variables, which can be used

to coordinate high-dimensional movement trajectories.

On the basis of the probabilistic DMP, we propose to ex-

ploit robot null-space so as to unify both Cartesian and joint

constraints, since the exploration of null-space allows for a

flexible joint trajectory in a redundant robotic system. More

specifically, we introduce a covariance-weighted measure to

guide the null-space exploration so as to provide the robot

with trajectories that closely resemble human demonstrated

trajectories in both Cartesian and joint spaces. Moreover, the

proposed hybrid space learning framework is extended to

include additional joint constraints (e.g., movement smooth-

ness and joint limits) in order to facilitate a robust robot

trajectory execution.

This paper is organized as follows. We first review the

probabilistic DMP in Section II. Subsequently, we propose

the hybrid trajectory optimization using null-space explo-

ration in Section III, and illustrate the performance of our

approach in Section IV. Section V covers related work

and, finally, we summarize our results and discuss possible

extensions in Section VI.

II. A PROBABILISTIC TREATMENT OF DYNAMICAL

MOVEMENT PRIMITIVES

When learning a skill from human demonstrations, robot

trajectories in Cartesian and joint spaces can be recorded

through kinesthetic teaching, which are subsequently used

to train a DMP. The trained DMP allows for adapting



trajectories in both spaces towards new goals while providing

a stable reproduction of the task.

Formally, let us consider a task exclusively learned in

Cartesian space as an example, and denote the Cartesian

position of the robot end-effector as ξ. Formally, DMP is

described as (see [8] for details)

τ ṡ = −αs

τ2ξ̈ = Kp(gp − ξ)− τKvξ̇ + sfp(s)

f
p
k (s) =

∑N
i=1 φi(s)wk,i
∑N

i=1 φi(s)

, (1)

where τ > 0 and α > 0 respectively represent the move-

ment duration and a scalar, s is the phase variable driving

the forcing term fp(s).1 Moreover, f
p
k (s) denotes the k-th

element of fp(s), φi(s) = e−hi(s−ci)
2

are the basis functions

with parameters hi > 0 and ci ∈ [0, 1], wk,i represents

the weighting coefficient, and N denotes the number of

basis functions. Finally, gp represents the trajectory goal, Kp

and Kv can be viewed as stiffness and damping diagonal

matrices, while ξ̇ and ξ̈ denote the Cartesian velocity and

acceleration, respectively.

DMP essentially models the relationship between ξ̈t and

{ξt, ξ̇t} using a spring-damper system dynamics while the

phase variable s and the forcing term f(s) are used to

modulate the movement duration and trajectory shape, re-

spectively. Note that we slightly modify the original DMP

in [8], so that we can introduce the probabilistic treatment

of DMP conveniently.

Instead of explicitly modeling the forcing term fp as a

function of the phase variable s, we can model the joint prob-

ability distribution of {s, fp}⊤ (see [3], [7]), which alleviates

the need for basis functions φi(s). Formally, let us assume

that M demonstrations of time-length N are recorded and

denoted by {{tn,m, ξn,m}
N
n=1}

M
m=1. By using the collected

dataset and applying (1), a new dataset {sk, f
p
k}

M×N
k=1 is

obtained, which is subsequently used to train a GMM that

models the joint probability distribution P(s, fp), yielding
[

s

fp

]

∼
∑K

i=1 π
p
iN (µp

i ,Σ
p
i ) with prior probabilities π

p
i ,

means µ
p
i and covariances Σ

p
i .

Each Gaussian component {µp
i ,Σ

p
i } can be re-written

into a block-decomposition form, i.e., µ
p
i =

[

µ
p
s,i

µ
p
f,i

]

and

Σ
p
i =

[

Σ
p
ss,i Σ

p
sf,i

Σ
p
fs,i Σ

p
ff,i

]

. For a new datapoint s, its corre-

sponding conditional output is computed by GMR as follows

(see [9])

P(fp|s) =
K
∑

i=1

h
p
i (s)N (µ̄p

i (s), Σ̄
p

i ), (2)

with

h
p
i (s) =

π
p
iN (s|µp

s,i,Σ
p
ss,i)

∑K
k=1 π

p
kN (s|µp

s,k,Σ
p
ss,k)

(3)

1The superscript ’p’ represents Cartesian space component.

µ̄
p
i (s) = µ

p
f,i +Σ

p
fs,i(Σ

p
ss,i)

−1(s− µ
p
s,i) (4)

Σ̄
p

i = Σ
p
ff,i −Σ

p
fs,i(Σ

p
ss,i)

−1Σ
p
sf,i. (5)

By following the same approach we can fit M demonstrated

D-dimensional joint trajectories {{tn,m,qn,m}
N
n=1}

M
m=1,

where q ∈ R
D represents the robot joint position. In

this case we model P(s, fq) and retrieve the conditional

probability P(fq|s) using GMR. It is worth pointing out

that the prediction in (2) can be approximated by a single

Gaussian distribution [9], which facilitates the combination

of trajectory constraints coming from both Cartesian and

joint spaces, as explained in the next section.

III. HYBRID PROBABILISTIC TRAJECTORY

OPTIMIZATION

Given trained probabilistic DMPs with joint probability

distributions P(s, fp) and P(s, fq), we need to adapt them

to new goals in order to mimic human skills in Cartesian

and joint spaces simultaneously. The problem is that, for

every new Cartesian goal that was not observed during the

demonstrations, the robot does not know the joint goal that

best resembles the robot postures as demonstrated.

Let us picture a reaching task as an example. The tra-

jectory adaptation in the Cartesian space is straightforward,

where we only need to substitute the new position of the

object g∗
p (i.e., the target in Cartesian space) into (1).

However, the adaptation in joint space is less intuitive since

the desired joint state at the end of the task (i.e., the target in

joint space) is unknown beforehand. More specifically, when

the robot is redundant and thus its inverse kinematics has

infinite solutions, it is non-trivial to determine an appropriate

joint target g∗
q that is consistent with g∗

p.

In order to determine the desired joint target g∗
q , we pro-

pose to explore the null-space of the robot Jacobian, in order

to make full use of the robot redundancy (Section III-A). By

exploiting the null-space, we can unify the adapted Cartesian

and joint trajectories directly, as discussed in Section III-B.

Note that we might encounter additional constraints such as

motion smoothness and joint limits, thus we formulate the

optimization in the null-space as a reinforcement learning

problem so as to address the hybrid learning and additional

constraints (Section III-C). An illustration of the proposed

hybrid space learning is shown in Fig. 2.

A. Trajectory Adaptation in Cartesian and Joint Spaces

Let us first consider the trajectory adaptation in Cartesian

space, and assume that the forcing term f
p
t ∼ N (µp

f,t,Σ
p
f,t)

at time t has been retrieved.2 By substituting the new target

g∗
p and the forcing term into the DMP model (1), we can

estimate the corresponding acceleration ξ̈t, as well as ξ̇t and

ξt by numerical integration.

With the new Cartesian target g∗
p, we employ an inverse

kinematics controller to estimate the joint trajectories that

correspond to the desired trajectory in Cartesian space, i.e.,

qt = qt−1 + J†(qt−1)(ξt − ξt−1) + (I− J†J)N(θ)δt, (6)

2Time t should be transformed into s before retrieval using GMR
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Fig. 2. Illustration of the hybrid space learning. Human demonstrations are used to extract datasets {sk, f
p

k
}M×N
k=1

and {sk, f
q

k
}M×N
k=1

in Cartesian and
joint spaces, respectively. GMM is then employed to fit these datasets. After, given a new Cartesian target, we first estimate the corresponding joint target
and then generate adapted trajectories in both spaces using (1). The adapted Cartesian trajectory is transformed into joint space by using the Jacobian-based
inverse kinematics. Finally, the null-space parameter θ is optimized to unify trajectory constraints from both spaces as well as to fulfill additional constraints.

where J† = J⊤(JJ⊤)−1 is the Moore-Penrose pseudo-inverse

of J, I represents the identity matrix of proper dimension-

ality, N(θ) corresponds to a joint space movement in the

null-space that is parameterized by the null-space parameter

θ, and δt > 0 denotes the time interval. By iteratively

applying (6), we can estimate qN at the last time step, which

corresponds to the joint target g∗
q(θ) = qN . Note that the

forcing term f
p
t in (1) is a stochastic variable, and thus we use

its expected values. With the new joint target, adapted joint

trajectories can be generated using the probabilistic DMP

described in (1), which will be exploited together with the

adapted Cartesian trajectory to mimic human demonstrated

trajectories in Cartesian and joint spaces as explained next.

B. Unifying Cartesian and Joint Constraints Using Null-

space Exploration

Here we explain how to combine the adapted trajecto-

ries from Cartesian and joint spaces that were obtained as

explained previously. On the basis of the new Cartesian

target g∗
p and the retrieved distribution of the forcing term

f
p
t ∼ N (µp

f,t,Σ
p
f,t), we can derive the desired acceleration

¨̄ξt with mean E(¨̄ξt) and covariance D(¨̄ξt) by using (1) as

E(¨̄ξt) =
1

τ2

(

Kp(g∗
p − ξt−1)− τKvξ̇t−1 + sµ

p
f,t

)

D(¨̄ξt) =
s2

τ4
Σ

p
f,t

, (7)

where ξt−1 and ξ̇t−1 respectively represent the current Carte-

sian position and velocity. From the acceleration ¨̄ξt computed

in (7), the desired Cartesian velocity ˙̄ξt and position ξ̄t can

be computed by numerical integration. The transformed joint

position q̄t estimated by using (6) has mean and covariance

E(q̄p
t |θ)=qt−1 + J†(ξ̇t−1δt+E(¨̄ξt)δ

2
t )+(I− J†J)N(θ)δt

D(q̄p
t ) = δ4t J

†
D(¨̄ξt)J

†T
.

(8)

The transformed joint trajectory q̄t actually corresponds to

the adapted Cartesian trajectory ξ̄t, which will be used in

the hybrid learning process. Similarly, by using the new joint

target g∗
q (estimated as described in Section III-A) and the

retrieved distribution of the forcing term f
q
t ∼ N (µq

f,t,Σ
q
f,t)

at time t, we can estimate the adapted joint acceleration q̈t

with mean and covariance

E(¨̄qq
t |θ) =

1

τ2

(

Kp(g∗
q(θ)− qt−1)− τKvq̇t−1 + sµ

q
f,t

)

D(¨̄qq
t ) =

s2

τ4
Σ

q
f,t

(9)

and its corresponding joint position qt using numerical

integration

E(q̄q
t |θ) = qt−1 + q̇t−1δt + E(¨̄qq

t |θ)δ
2
t

D(q̄q
t ) = δ4tD(¨̄q

q
t )

, (10)

where qt−1 and q̇t−1 represent the current joint position and

velocity.

Since our goal is to mimic human demonstrations in both

Cartesian and joint spaces, we need to unify the constraints

extracted in both spaces (i.e., adapted trajectories). Therefore,

it is desirable that the adapted joint state q̄
q
t in (10) stays

close to the transformed joint state q̄
p
t in (8). In order to do

so, we propose to minimize the objective function

Je(θ) =

N
∑

t=1

e⊤tD(q̄
q
t )

−1et, (11)

with et = E(q̄q
t |θ) − E(q̄p

t |θ). The covariance-weighted

form of (11) ensures that E(q̄q
t |θ) precisely matches E(q̄p

t |θ)



Algorithm 1 Hybrid trajectory optimization using null-space

exploration

1: Learn P(s, fp) and P(s, fq) from demonstrations

2: Initialize g∗
p, τ , θ(0), Σǫ, c, γ1, γ2 and γ3

3: repeat

4: for h = 1 to H do

5: Sample ǫh ∼ N (0,Σǫ)
6: θn,h ← θ(n) + ǫh
7: for t = 1 to N do

8: Retrieve N (µp
f,t,Σ

p
f,t) using GMR (2)

9: Set the forcing term f
p
t = µ

p
f,t

10: Estimate ξ̈t using (1) and {ξt, ξ̇t}
11: Estimate qt(θn,h) using (6)

12: end for

13: g∗
q ← qN (θn,h)

14: Set Je = Jl = Js = 0
15: for t = 1 to N do

16: Retrieve N (µp
f,t,Σ

p
f,t) and N (µq

f,t,Σ
q
f,t)

17: Estimate E(¨̄ξt) and E(q̄p
t |θn,h) with (7)-(8)

18: Estimate E(¨̄qq
t |θn,h) and D(¨̄qq

t ) with (9)

19: Estimate E(q̄q
t |θn,h) and D(q̄q

t ) with (10)

20: qt ← q̄
q
t , q̇t ←

1
δt
(qt − qt−1)

21: et ← E(q̄q
t |θn,h)− E(q̄p

t |θn,h)
22: Compute accumulated values Je, Jl and Js
23: end for

24: Compute J(θn,h) using (14)

25: end for

26: Update θ(n+1) using (15)

27: until θ converges

28: return {qt}
N
t=1

for the trajectory segment associated with small covariance

D(q̄q
t ). Meanwhile, a low matching accuracy is allowed

when the associated covariance D(q̄q
t ) is large. Note that

this weighted scheme shares similarities with competitive

imitation learning [5], minimum intervention control [9],

prioritized control [6] and the trajectory similarity criterion

[10].

Once the optimal θ is computed, the joint state q̄
q
t can be

determined using (10), which is finally used for controlling

the robot in joint space. Note that we can also consider the

objective function as
∑N

t=1 e
⊤

tD(q̄
p
t )

−1et and use q̄
p
t as the

joint command. However, due to possible inconsistencies

between q̄
p
t and q̄

q
t , we cannot strictly address both con-

straints simultaneously albeit that the covariance-weighted

measure (11) is used to enforce both constraints to stay close.

Therefore, we can select the one whose corresponding space

plays a more significant role in the hybrid imitation learning,

but this is achieved at the cost of loose imitation in the other

space.

C. Additional Constraints and Reinforcement Learning of

the Null-Space Parameter

Often, we might also need to consider additional con-

straints such as joint limits and motion smoothness, so that

the robot can execute the desired joint trajectory safely [11].

In this context, let us first formulate the aforementioned

constraints as two cost functions. The joint limit constraint

is defined by3

Jl(θ) =

N
∑

t=1

D
∑

k=1

(

qt,k −mk

mu,k −ml,k

)2

, (12)

where the subscript k represents the k-th joint, mu,k and

ml,k respectively represent the upper and lower limits of the

k-th joint qk, and mk denotes the middle value of the joint

limits. In order to model the joint smoothness, we consider

Js(θ) =

N
∑

t=1

(qt − qt−1)
⊤(qt − qt−1). (13)

Based on the above constraints, we can formulate a new

objective (i.e., cost function) as follows

J(θ) = γ1Je(θ) + γ2Jl(θ) + γ3Js(θ) (14)

with positive coefficients γ1, γ2 and γ3.

Now, we optimize the null-space parameter θ so as to

minimize J(θ). Here, we apply a reward-weighted policy

search method to address this optimization problem. The

update rule of θ is given by [12], [13]

θ(n+1) = θ(n) +

∑H
h=1 ǫhe

−cJ(θ(n)+ǫh)

∑H
h=1 e

−cJ(θ(n)+ǫh)
, (15)

where c > 0, θ(n) represents the null-space parameter at the

n-th iteration, H denotes the number of roll-outs for each

update and ǫh ∼ N (0,Σǫ) represents an exploration noise.

The entire proposed approach is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on the

simulated and real COMAN humanoid robot [14] using a

hand-shaking task which consists of a reaching movement

and a waving motion (Fig. 3). This task requires a strong

coordination between Cartesian and joint spaces in order to

exhibit a natural hand-shaking movement. For the task we

consider 10 degrees of freedom (DoF), 3 of which from the

torso and 7 from the right arm.

We collected four robot hand-shaking trajectories in Carte-

sian and joint spaces simultaneously via kinesthetic teaching

(as shown in the first row in Fig. 3). The demonstrated trajec-

tories, as depicted in the first row in Fig. 4, are subsequently

used for fitting the probabilistic DMPs. On the basis of

the extracted phase variables and the corresponding forcing

terms, we use a 4-states GMM to learn P(s, fp) in Cartesian

space and a 4-states GMM to learn P(s, fq) in joint space.

An illustration of the estimated joint probability distribution

of {s, fp
1 } for the first Cartesian position component is shown

in the left plot in Fig. 5, while the right plot corresponds

to the seventh joint q7, where the forcing terms with small

covariances can be viewed as consistent dynamics when

3Note that the executed joint trajectory depends on g∗

q(θ), thus this
constraint is an implicit function of θ.



Fig. 3. Snapshots of human demonstrations (first row) in a hand-shaking task and adapted robot movement using the hybrid optimization approach (second

and third rows). During the demonstration phase (first row), the human teacher moves the robot end-effector (right arm) to a specific Cartesian position
and then performs a hand-shaking movement. During the generalization phase (second row and third row), given an unseen Cartesian target, the robot
optimizes its trajectory to mimic demonstrated trajectories in both Cartesian and joint spaces. Dashed circles represent different areas for shaking hands.
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Fig. 4. Human demonstrations (first row) and adapted trajectories associated with new (unobserved) Cartesian targets (second and third rows), where
the horizontal axis denotes time t. We only illustrate the trajectories of three Cartesian components (left three columns) and three robot joints (right three
columns). The second and third rows respectively correspond to new Cartesian targets [0.35 − 0.2 0.2]⊤ and [0.15 − 0.15 0.1]⊤. The blue curves show
the trajectory evolution based on the updated null-space parameter θ, where the color changing from light to dark denotes the learning evolution. The
green curves correspond to the exclusive imitation learning in Cartesian space, where the Cartesian trajectory is adapted by using probabilistic DMP and
the joint trajectories are determined by a typical Jacobian-based position controller without considering the null-space parameter.



s
0.20.40.60.8

f
p 1

-200

-100

0

100

200

300

s
0.20.40.60.8

f
q 7

-1000

-500

0

500

1000

1500

Fig. 5. Probability distributions of {s, fp
1
} (left graph) and {s, fq

7
} (right

graph) encoded by GMM. Trajectories retrieved by GMR are depicted as
blue curves. The gray trajectories represent the extracted data-pairs from
demonstrations. The ellipses are Gaussian components in GMM.

trial number

50 100 150 200 250

c
o
s
t

5

10

15

20
target 1

target 2

Fig. 6. Error-bar curves of cost values in the hand-shaking task. Solid
curves represent mean values while vertical bars denote standard deviation.

modulating the spring-damper system in the probabilistic

DMP. The relevant parameters in the Algorithm 1 are defined

as τ = 7s, θ(0) = 0, Σǫ = 10−4I, c = 3, γ1 = 0.01,

γ2 = 0.1 and γ3 = 1, where I is an identity matrix.

We separately test two Cartesian goals that are not ob-

served in demonstrations g∗
p1

= [0.35 − 0.2 0.2]⊤ and

g∗
p2

= [0.15 − 0.15 0.1]⊤ using the simulated COMAN

robot. By employing our approach, the joint and Cartesian

trajectories are adapted, as shown in the second and third

rows in Fig. 4, where blue lines represent the evolution of

Cartesian and joint space trajectories (from light to dark blue)

as θ is updated using (15). For comparison purposes, we

also evaluate the imitation learning in the Cartesian space

exclusively, where the Cartesian trajectory (green curves in

Fig. 4) is generated by using the probabilistic DMP according

to the Cartesian goals and meanwhile the Jacobian-based

position controller (6) with θ = 0 is used to calculate the

Fig. 7. Snapshots of human demonstration in a striking task (top row) and
an adapted movement generated by the hybrid optimization method towards
an unseen striking target. Dashed circles represent different striking targets.

corresponding joint trajectories.

From Fig. 4, we can observe that the proposed method is

capable of generating trajectories (i.e., darkest blue curves

in the second and third rows) that resemble human demon-

strations (depicted in the first row) in both Cartesian and

joint spaces. In contrast to our hybrid approach, the typical

Jacobian-based position controller only mimic the demon-

strated trajectories in the Cartesian space, while the shape

of joint trajectories largely deviates from demonstrations,

therefore failing to imitate the demonstrated posture patterns.

Notice that, even though the trajectories resemble the demon-

strations, occasionally minor deviations occur, which are due

to the fact that trajectory constraints from Cartesian and joint

spaces can sometimes conflict. Nevertheless, the reaching of

the Cartesian goal is never compromised.

In order to statistically evaluate the performance of Algo-

rithm 1, we run it 5 times for each Cartesian goal and for

each run the null-space parameter is updated with 250 trials

using (15). The statistical error-bar curves are illustrated in

Fig. 6, showing that learning of the null-space parameter

renders smaller cost values and thus the final joint trajectory

is optimal in terms of task constraints in both Cartesian and

joint spaces, motion smoothness and joint limits.

Finally, we test the proposed hybrid optimization on the

real COMAN robot as well. Snapshots of the hand-shaking

movement is provided in Fig. 3 (second and third rows).

It is observed that the hand-shaking movement is mainly

accomplished by the elbow joint (i.e. q7) rather than other

joints, which is closely similar to human demonstrated

movements. Also, In order to show the applicability of the

proposed method, we evaluate the proposed method in a

different scenario (i.e., striking task), as shown in Fig. 7,

proving the effectiveness of our approach again.

V. RELATED WORK

The probabilistic DMP was applied in [15], where task

parameters were incorporated so as to derive a task-

parameterized DMP. In that work, the learning of trajectories

was only carried out in either Cartesian or joint space,

but without addressing the problem of learning a task with

relevant Cartesian and joint constraints coming from the

observed motion patterns.

Learning competing constraints in Cartesian and joint

spaces was studied in [5], [6], where trajectories in both

spaces were separately encoded using GMM, and subse-

quently the corresponding time-driven probabilistic reference

trajectories were retrieved using GMR. In order to gen-

eralize the learned skill in Cartesian space, relative posi-

tions between the robot end-effector and the target were

modeled instead of the absolute position values [5]. Later,

a task-parameterized treatment of the trajectory adaptation

in Cartesian space was proposed in [6], yielding reliable

extrapolation capabilities in the Cartesian space. In order to

combine trajectory constrains in Cartesian and joint spaces,

both [5], [6] transformed the adapted Cartesian trajectory

into joint space using the Jacobian-based position controller

without exploiting the robot null-space.



Moreover, [5], [6] did not take into account the adaptation

of joint trajectories. Namely, the distribution of demonstrated

joint trajectories is directly applied to new situations without

any modulation. Considering that a new Cartesian target

might need joint trajectories that largely differ from the

demonstrated ones in terms of joint movement ranges (e.g.

q1 in the second and third rows in Fig. 4 has significantly

different values compared to the original ones in the first

row), the distribution of demonstrated joint trajectories (par-

ticularly the mean values) becomes inappropriate, and hence

the original joint constraints are undesirable.

In contrast to the exclusive adaptation in Cartesian space,

we consider the trajectory adaptations in both the Cartesian

and joint spaces simultaneously, allowing us to modulate

constraints in both spaces for new situations, and thus

generate trajectories that resemble human demonstrations.

More specifically, unlike [5], [6], we exploit the null-space of

the robot, rendering the exploitation of redundancy in inverse

kinematics feasible. Also, note that [5], [6] calculate the

final joint state as a Gaussian product of the transformed

and demonstrated joint states, while we here exploit the

covariance-weighted measure to make the transformed and

adapted joint states stay close, providing a novel perspective

to treat competing constraints in Cartesian and joint spaces

in the context of imitation learning.

Another related work is proposed in [16], where both

Cartesian and joint trajectories can be generated towards new

targets by using a pure spring-damper system. However, this

system can not encode human demonstrations and general-

ize the learned skills to new situations. Note that in [17]

Cartesian trajectory is reproduced by using GMR while the

joint trajectory is generated with the spring-damper model.

Differing from [16], [17], we focus on the imitation learning

(particularly from multiple demonstrations) and adaptations

in both Cartesian and joint spaces, which allows the robot

to learn various human skills straightforwardly.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a hybrid trajectory optimization approach

that can be employed to mimic human skills in both Cartesian

and joint spaces simultaneously. Specifically, we proposed

to exploit the robot null-space to explore solutions enforcing

the robot to imitate human trajectories in both spaces. We

demonstrated the effectiveness of the hybrid space optimiza-

tion through hand-shaking and striking tasks.

In this paper, we considered the modeling of demon-

strations without considering the external environment state.

However, environment variables may be relevant in applica-

tions where the robot heavily interacts with its surroundings.

For instance, in the robot table tennis setting, we need to

determine which striking movement (e.g., forehand and back-

hand) is the most appropriate in order to return an incoming

ball properly. Similar to the task-parameterized DMP [15]

and the stylistic DMP with an additional movement descrip-

tor [18], the extension of our work could incorporate the

external state into the probabilistic DMP, so that the hybrid

trajectory optimization is capable of choosing appropriate

movement trajectories to learn and generalizing learned skills

towards different stimuli more naturally.

In addition, the probabilistic DMP employs the same

spring-damper formulation as DMP, which prevents its ap-

plication to situations with velocity constraints. The recently

developed non-parametric kernelized movement primitive

(KMP) [19] allows for modulations of both position and

velocity trajectories simultaneously. Thus, we plan to extend

the hybrid optimization approach by exploiting KMP so as

to handle various position and velocity requirements.
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