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An Uncertainty-Aware Minimal Intervention Control Strategy Learned

from Demonstrations

João Silvério, Yanlong Huang, Leonel Rozo and Darwin G. Caldwell

Abstract— Motivated by the desire to have robots physically
present in human environments, in recent years we have
witnessed an emergence of different approaches for learning
active compliance. Some of the most compelling solutions exploit
a minimal intervention control principle, correcting deviations
from a goal only when necessary, and among those who follow
this concept, several probabilistic techniques have stood out
from the rest. However, these approaches are prone to requiring
several task demonstrations for proper gain estimation and
to generating unpredictable robot motions in the face of
uncertainty. Here we present a Programming by Demonstration
approach for uncertainty-aware impedance regulation, aimed at
making the robot compliant – and safe to interact with – when
the uncertainty about its predicted actions is high. Moreover, we
propose a data-efficient strategy, based on the energy observed
during demonstrations, to achieve minimal intervention control,
when the uncertainty is low. The approach is validated in an
experimental scenario, where a human collaboratively moves
an object with a 7-DoF torque-controlled robot.

I. INTRODUCTION

Learning variable impedance controllers in the context

of Programming by Demonstration (PbD) [1] has been an

active topic of research during recent years. In particular,

largely influenced by results from the field of motor control

[2], probabilistic models have been exploited extensively

to endow robots with the ability to efficiently synthesize

demonstrated skills [3], [4], [5], [6]. Nonetheless, several

aspects still present relevant challenges to the skill transfer

problem. On one hand, by exploiting a notion of variance

associated with redundancy or variability, most state-of-the-

art techniques may require a significant number of demon-

strations for proper control gain design, losing applicability

in scenarios where few demonstrations are available or where

providing them might be cumbersome. On the other hand,

such solutions typically do not render the robot capable of

properly handling situations where training data is missing

or not available, potentially leading to dangerous and unpre-

dictable motions.

Here we offer a novel perspective on this problem by

challenging the notion that tracking precision should be a

function of redundancy in training data. We instead propose

that precision should be intrinsically linked to a robot’s

confidence about its desired actions. For this, we rely on

the predictive power of Gaussian Processes (GP) to obtain

estimations of the uncertainty level about a predicted desired

state. Moreover, while acknowledging the relevance of the

minimal intervention control principle proposed by Todorov
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[2], we provide a data-efficient strategy for control effort

regulation based on the energy in the demonstrations. To this

end, we exploit an optimal control formulation together with

an argument based on the work-energy theorem to support

our choice.

In summary, our framework aims for estimating active

compliance controllers that provide:

1) uncertainty-aware robot state tracking precision, where

the compliance is a function of the uncertainty of

predicted actions, and

2) a data-efficient, physically-meaningful strategy that

exploits the energy measured during demonstrations to

prioritize the correction of the most important direc-

tions of a movement when deviations occur.

While the latter point can be seen as addressing the how

to imitate? problem in PbD, the former pertains to the

question of when to imitate? [7]. We here posit that the

robot should imitate when it is confident about the actions

it should perform and otherwise be safe to interact with.

Such an intuition is particularly timely given today’s high

requirements for physical safety in human-robot interaction

scenarios.

This paper is comprised of six sections. Section II sum-

marizes related work, Section III describes our proposed

approach in detail, while in Section IV we provide exper-

imental results, in both simulation and a real robot, using

a human-robot collaboration scenario. Finally, we provide a

discussion on the proposed solution, as well as future work

directions, in Section V, and close the paper in Section VI

with conclusions.

II. RELATED WORK

Motivated by the desire to have robots physically present

in human environments, we have recently witnessed an emer-

gence of different approaches for learning active compliance

from demonstrations. The trend for exploiting probabilistic

approaches in this context dates back a few years, to works

such as [8], [9] where heuristics are proposed to set stiffness

and damping gains of impedance controllers based on co-

variance matrices that model the variability in the data. More

recently, however, optimal control formulations have started

to gain traction, likely due to encouraging results from the

field of motor control. According to the minimal intervention

principle, Todorov [2] suggests that deviations from a desired

behavior should be corrected in direct proportion to the

amount of disturbance to the overall task performance. In

the light of the work of Todorov, Medina et al. [3] propose

a framework for endowing robots with assistive behaviors,



where full covariance matrices, retrieved from a Hidden

Markov Model (HMM) that compactly represents demonstra-

tions, are exploited as a proxy for the degree of correction

along each movement direction. In the same spirit, Calinon

et al. [4] exploit the variability and correlations in demon-

strations, encoded in a Gaussian Mixture Model (GMM),

in combination with a task-parameterized formulation, to

efficiently adapt skills with variable impedance to new sit-

uations. Furthermore, Rozo et al. [5] extend the concept to

also consider interaction forces into the control problem. One

common feature among the aforementioned works is that,

due to the specificities of the underlying techniques such

as GMM and HMM, variance is equated with variability

in demonstrations. Recently, this notion and its implications

in practical scenarios have been debated to some extent

as different state-of-the-art probabilistic techniques provide

complementary notions of variance. In [10], Umlauft et al.

discuss the differences between variance being interpreted

as uncertainty and variability. The topic is also covered in

[11], where the different notions are exploited in scenarios

that require the combination of different controllers, and in

[12], in the context of robot dynamics with multiple additive

noise sources. The first contribution of the present work is

the exploitation of the notion of variance as uncertainty to

regulate impedance gains and render the robot compliant

when uncertain about its actions. However, in the cases

where the uncertainty is low, it still makes sense to follow

a minimal intervention approach. Therefore, our second

contribution is a strategy, that does not require variability,

for selectively correcting deviations in the different degrees

of freedom. The strategy exploits the work-energy theorem

[15] to establish a connection between the energy that is used

in the demonstrations and the control effort for each degree

of freedom. Previous works set the effort manually based on

the maximum desired amplitude for the commands [4], [5],

while [6] set it based on the trade-off between reproduction

accuracy and magnitude of the controls. In contrast, this

parameter is here learned from the demonstrations and is

allowed to vary throughout the task.

III. PROPOSED APPROACH

In the spirit of previous works [3], [4] who exploit

optimal control techniques to design controllers using hu-

man demonstrations, we propose a formulation based on a

typical Linear Quadratic Regulator (LQR) [13] to achieve

the aforementioned goals (Section III-A). We then learn the

parameterization of the LQR problem from demonstrations

(Sections III-B and III-C).

A. Problem description

We consider linear systems ξ̇ = Aξ + Bu, where

ξ, ξ̇ ∈ R
N correspond to the system state and its first-

order derivative (N denotes the dimension of the state) and

u ∈ R
M is a control command, where M denotes the num-

ber of controlled degrees of freedom. Moreover, A ∈ R
N×N

and B ∈ R
N×M represent the state and input matrices. Here,

we make the following simplifying assumptions, in line with

[4], [5]:

1) We focus our approach on task space control and thus

we have ξ = [x⊤ ẋ⊤]
⊤

, where x, ẋ ∈ R
3 represent the

end-effector position and linear velocity.

2) We assume a robot with perfect dynamics compensa-

tion (i.e. inertia, friction, gravity) and thus model the

end-effector as a unit mass.

On the basis of these assumptions, we formulate our LQR

problem using a double integrator system, i.e.:

A =

[

03×3 I3×3

03×3 03×3

]

, B =

[

03×3

I3×3

]

. (1)

Moreover, we consider that the end-effector is driven to track

a sequence of reference states ξ̂t = [x̂t
⊤ ˆ̇xt

⊤]⊤, t = 1, . . . , T
by an impedance controller which generates a force in Carte-

sian space given by F t = KP

t (x̂t − xt) +KV

t (ˆ̇xt − ẋt),
where KP

t and KV

t are time-varying, positive-definite, stiff-

ness and damping gain matrices, respectively. Under the unit

mass assumption 2), we have that ut = F t = ẍt, i.e. the

control command corresponds to the desired acceleration of

the system. We resort to LQR to find an optimal linear state

feedback control law

ut = [KP

t KV

t ](ξ̂t − ξt) (2)

that drives the system to track the desired states with time-

varying stiffness and damping gain matrices. Such control

law is computed as the solution of the quadratic cost function

c(t) =

T
∑

t=1

(ξ̂t − ξt)
⊤Qt(ξ̂t − ξt) + u⊤

tRtut, (3)

where Qt is a N×N positive semi-definite matrix that deter-

mines how much the optimization penalizes deviations from

the desired state ξ̂t and Rt is an M × M positive-definite

matrix that penalizes the magnitude of the control commands

or, in other words, regulates the control effort. Equation (3)

corresponds to the finite horizon LQR formulation and its

solution can be obtained through backward integration of

the Riccati equations, when matrices Qt and Rt are known

for the complete time horizon t = 1, . . . , T . If this is not the

case, one can resort to the infinite horizon formulation

c(t) =
∞
∑

n=t

(ξ̂t − ξn)
⊤Qt(ξ̂t − ξn) + u⊤

nRtun. (4)

which is solved iteratively using the algebraic Riccati equa-

tion.

As discussed in Section II, previous works set Qt to

the inverse of the predicted covariance matrix that models

demonstration data, i.e. Qt = Σ
−1

t , and manually set

the effort regulation term Rt. The main novelty in our

approach is that we propose to estimate both Qt and Rt

from demonstrations simultaneously. More specifically:

1) We estimate Qt based on the uncertainty that the robot

has about its actions, given some input. This is aimed

at rendering the robot compliant when the uncertainty

is high, by allowing for high state errors.



(a) GMR: The variance models the variability in the dataset. This occurs
regardless of the underlying modeling technique (e.g. GMM, HMM).

(b) GPR: The variance models the uncertainty of the estimate (depending
on the presence/absence of training datapoints in the neighborhood).

Fig. 1: For a given set of datapoints (black dots), GMR and GPR compute different and complementary notions of variance. The green line is the regressed
function, while the light green contour represents the computed variance around the prediction.

2) We exploit Rt to regulate the desired control action

in a way that a variation of the minimal intervention

principle applied in [3], [4] is followed, when the

robot in certain about its actions. In this case, the

kinetic energy measured along each degree of freedom

(DoF) during the demonstrations is used to regulate

the amplitude of the control command of each DoF.

Namely, higher/lower commands are allowed when the

observed kinetic energy was higher/lower.

To do so, we here rely on the predictive power of Gaussian

Processes.

B. Modeling of desired state ξ̂t and penalty term Qt

Let us consider T demonstrated datapoints, forming tu-

ples {ζI

t , ζ
O

t }
T
t=1

, where the indices I, O denote input

and output dimensions. Here the inputs ζI

t can represent

any measurable quantities, e.g. time, interaction forces,

human/robot states, while typically the outputs are a de-

sired state for the robot, whether a pose in task space

or a joint space configuration. A Gaussian Process is

a distribution over functions, with a Gaussian prior on

outputs ζO given by ζO∼ N (m(ΞI),K(ΞI,ΞI)), where

m(ΞI) is a vector-valued function yielding the mean of

the process, K(ΞI,ΞI) denotes its covariance matrix and

Ξ
I=[ζI

1
, ζI

2
, . . . ζI

T ] ∈ R
DI×T is a concatenation of ob-

served DI-dimensional inputs. The covariance matrix is

computed from a kernel function k(·, ·) evaluated at the

inputs, with elements Kij = k(ζI

i , ζ
I

j ). Several types of

kernel functions exist; see e.g., [14]. Here, we exploit the

popular squared-exponential (SE) kernel, typically used to

model smooth functions and defined by

k(ζi, ζj) = ǫ2fexp

(

(ζi − ζj)
⊤(ζi − ζj)

l2

)

, (5)

where ǫ2f and l are hyperparameters that represent the output

variance and the input length scale.

Standard Gaussian Process Regression (GPR) allows the

prediction of a scalar function ζO

∗ = f(ζI

∗) : R
DI → R, for

arbitrary inputs ζI

∗ ∈ R
DI . In robotics, one typically requires

multi-dimensional outputs, thus GPR is often employed

separately for each output of a given problem. The prediction

of each output dimension d ∈ {1, 2, ..., DO} is given by

µd = m∗ + k∗[K + ǫ2nI]
−1(ζOd −m), (6)

σ2

d = k∗∗ − k∗[K + ǫ2nI]
−1k⊤

∗, (7)

where ζOd ∈ R
T is the vector of demonstrated outputs for di-

mension d, k∗ = [k(ζI

∗, ζ
I

1
) . . . k(ζI

∗, ζ
I

T )], k∗∗ = k(ζI

∗, ζ
I

∗),
m = m(ΞI), m∗ = m(ζI

∗), K = K(ΞI,ΞI), and ǫ2n is

an additional hyperparameter modeling noise in the observa-

tions (which acts as a regularization term). Furthermore, we

can concatenate the predictions into one single multivariate

Gaussian with mean and covariance matrix given by

µ
O
=







µ1

...

µDO






, ΣO =













σ2

1
0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 σ2

DO













. (8)

Here we use GPR to probabilistically model the demon-

strated multi-dimensional desired robot states ξ̂ and predict

them during reproduction, for new observations of the in-

puts, using (6). To do so, we set the output datapoints to

ζO

t = [x⊤

t ẋ⊤

t ]
⊤, a concatenation of demonstrated robot end-

effector position and velocity. The definition of inputs ζI

t

can however remain general (in the experimental evaluation

of Section IV, for example, we make it the human hand

position).

While the mean prediction (6) allows for retrieving desired

states, the variance prediction (7) plays another important

role in our approach. There exists one major difference

between the variance predicted by GPR and the one predicted

by Gaussian Mixture Regression (GMR), which is exploited

in [3], [4]. We illustrate this difference in Fig. 1, where

we see that the variance regressed by GMR (shown as an

envelope around the mean in Fig. 1(a)) reflects the datapoint

distribution in the original dataset or, in other words, the

variability in the data. Figure 1(b) shows that the predicted

GPR variance represents the uncertainty of the prediction or,

in different terms, the absence/presence of input datapoints.

On the basis of this observation, and given our goal of reg-

ulating the impedance of the robot based on the uncertainty

about its desired action, we propose to exploit GPR to define

the state penalty matrix Qt in (3)−(4) as

Qt = Σ
−1

O,t =













σ2

1,t 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 σ2

DO,t













−1

, (9)

where σ2

d,t denotes the variance of dimension d, predicted

at t. Intuitively, based on this design, one can expect the



Fig. 2: Demonstration of the collaborative transportation task, where a bag is cooperatively carried by a human and a robot. Orange arrows indicate the
main directions of the task: it starts with a movement along x3, followed by a movement along x2.

diagonal elements of Qt in (9) to be small when the

prediction uncertainty is high, penalizing less the deviations

from the desired state and rendering the robot compliant.

In the opposite way, when the uncertainty is low, the robot

should track its desired state in a stiffer manner.

In some cases, one might wish to have control over how

compliant the robot is when the uncertainty is high. Such a

prior on the level of compliance can be set in our approach by

selecting the kernel hyperparameter ǫ2f accordingly. Indeed

it can be easily demonstrated from (7) that, when a given

input point ζI

∗ is far from demonstrations, i.e. ‖ζI

∗ − ζI

i ‖ ≫
0, ∀i ∈ {1, . . . , T}, the predicted variance approaches the

kernel variance σ2

d → ǫ2f , i.e., Qt → diag(ǫ2f , . . . , ǫ
2

f )
−1,

which can be seen as a prior on the state penalty term and,

thus, on impedance.

With the proposed strategy for uncertainty-aware

impedance regulation, that renders the robot compliant in

the face of uncertainty, we now describe our proposed

solution for regulating the effort of each degree of freedom,

when performing a demonstrated task.

C. Regulating Rt using demonstrated energy profiles

The proposed effort regulation strategy originates from

the hypothesis that control commands with higher amplitude

must have required a high amount of energy to be generated

during demonstrations. Such intuition is backed up by the

work-energy theorem – whose importance in human motor

control is well attested [15] – which states that the work

done by a rigid body equates the variation of kinetic energy

during the movement.

Let us consider an arbitrary degree of freedom m. The

work done by the end-effector to move along that DoF

(starting at rest) with a force Fm by a distance xm is given by

Wm = Fmxm. Moreover, for a displacement that occurred

with a linear velocity ẋm, we have a variation of kinetic

energy given by Tm = 1

2
ẋ2

m, under the unit mass assumption.

According to the work-energy theorem,

Wm = Tm ⇐⇒ Fmxm =
1

2
ẋ2

m (10)

must hold. Given that we here consider um = Fm, from

(10) the required control effort scales with the kinetic energy,

i.e. um ∝ ẋ2

m. Therefore we propose to regulate the control

effort of each DoF as a function of the kinetic energy used in

the demonstrations, computed as the square of the observed

velocities. In particular we propose

Rt = λRE
−1

t , (11)

with Et = diag(ẋ2

1,t, . . . , ẋ
2

M,t) + λEI,

where λR is a hyperparameter that can be adjusted to regulate

the overall control effort and λE regularizes the energy

matrix, avoiding numerical instability when the demonstrated

velocities are excessively low. Through the choice of (11),

degrees of freedom with high energy result in low values

in the corresponding entries of Rt which, in turn, results in

higher amplitude control commands. Similarly to the effect

of ǫ2f on Qt, λE can also act as a prior on Rt, allowing

for setting the effort penalty and, thus, impedance, when the

predicted energy approaches zero.

With the GP encoding proposed in Section III-B, the

complete state is predicted during task reproduction, and

its velocity component is exploited in the gain estimation

through (11). Note that (11) does not require variability to

learn input-dependent impedance gains that may differ across

degrees of freedom. This stems from our approach being

built on GP, inheriting its data-efficiency when computing

(6) and (7), in constrast to the approach followed in [3], [4],

which requires several demonstrations to compute covariance

matrices that explain the data well.

IV. EVALUATION

We evaluate the proposed approach in a human-

robot collaboration scenario of jointly carrying an

object. For this task we used a torque-controlled 7-

DoF Barrett WAM robot. The experimental results

reported in this section were obtained in MATLAB,

by simulating the end-effector using the dynamical

system described in Section III. The reader is referred to

http://joaosilverio.weebly.com/2018iros.html

for videos using the real robot.

A. Experimental setup

We collected one demonstration of the task of collabora-

tively carrying a bag from the floor onto a table, as seen

in Fig. 2. In this scenario, the human right hand position

xH ∈ R
3 (with respect to the base of the robot) is tracked

using an optical tracking system and the robot end-effector

is kinesthetically guided by a demonstrator to fulfill the task.

Notice that there are essentially two important directions of

movement in this task. In the beginning, the end-effector

should move vertically, along x3, so as to lift the bag. Then,



it should move in the direction of the table which, in this

case, is x2. We chose to use one demonstration in order to

highlight that we can achieve uncertainty-aware impedance

regulation in a data-efficient manner, unlike typical PbD

approaches which rely on covariance information and thus re-

quire several demonstrations. Notice that our focus is on the

tracking of a desired reference trajectory at the end-effector

and thus we intentionally overlook the dynamic aspects of

this task such as contact forces or mass compensation. For

this reason, we intentionally use a load with low mass.

For the GP modeling, we consider the human hand as the

input to GPR, i.e., ζI

t = xH
t , t = 1, . . . , T , and the demon-

strated states as outputs, as described in Section III. Also,

in the experiments reported here we used λR = 1× 10−1,

λE = 1 × 10−4, l = 1 × 10−1m, ǫ2f = 1 × 10−1 and ǫ2n =
1 × 10−3. As per Section III, control actions in task space

are given by F = I3×3ẍ, with I3×3 a 3× 3 identity matrix

that follows from the unit mass assumption. Control actions

are transformed into torque commands through τ = J⊤F ,

to obtain torque references for each joint, where J is the

Jacobian matrix of the end-effector [16]. In a human-robot

interaction scenario such as this one, it is not possible to

predict in advance the desired state of the robot over a given

time horizon, as typically the robot does not know in advance

the future state of the human. We therefore exploit here the

infinite horizon formulation of LQR (4).

B. Learning variable stiffness and damping

In our first assessment, we used the demonstrated human

hand trajectory to predict the desired robot end-effector

position throughout one execution of the task. Figures 3(a)

and 3(b) show that the generated trajectory closely matches

the demonstrated one, both in position and velocity. This is

achieved through a proper estimation of stiffness and damp-

ing gain matrices, based on the demonstrated energy along

each of the three degrees of freedom of the Cartesian space.

Figure 4 shows the predicted energy during the execution of

the task, along with the corresponding stiffness and damping

gains. For convenience of visualization, we plot the results

against time, even though the trajectory was generated by

taking the human hand position as input. As expected, the

estimated gains are proportional to the predicted energy,

increasing when the movement has higher energy, and thus

validating the chosen energy-based LQR strategy. This is

especially evident in the two most important moments of this

task: the lifting, when the stiffness along x3 is higher than

that along the remaining directions (peaking at t ≈ 1.5s),

and moving towards the table, where the stiffness is high in

the x2 direction (peaking at t ≈ 5.5s). In order to showcase

this aspect further, we artificially applied two perturbations,

simulating a force F pert = [−50N −50N −50N ] applied to

the robot end-effector at different instants. Figure 5 shows the

response of each degree of freedom after the perturbations

are applied. One can observe that the obtained responses

are in line with the estimated stiffness profiles from Fig. 4:

during the first perturbation, the x3 direction is practically

not affected, with x2 resulting in a similar observation for

(a) Demonstrated human hand (purple) and end-effector (black) positions.
The light green curve represents the robot end-effector trajectory during

one reproduction. Initial and final points of each trajectory are denoted by
‘×’ and ‘◦’ respectively.

(b) Linear velocities in operational space: demonstrated (black lines) and
observed during one reproduction (dotted green lines).

Fig. 3: Positions and velocities of the end-effector generated using the
proposed approach, given demonstrations from a collaborative transportation
task where the human hand is used to predict desired robot actions.

the second case. The accompanying video clearly shows this

aspect in the real robot.

C. Uncertainty-dependent gains

Subsequently, we tested the capabilities of the proposed

framework in rendering the robot compliant when it is

uncertain about its actions. Three points, simulating a human

hand gradually moving further away from the demonstra-

tions, were used to query the GP for an energy predic-

tion and subsequent stiffness and damping gain matrices.

The selected points are 0.1m, 0.2m and 0.5m away from

an arbitrarily chosen demonstrated human hand position,

along the −x1 direction: p
1
= [0.8162 0.1053 − 0.1760],

p
2
= [0.7162 0.1053 − 0.1760], p

3
= [0.4162 0.1053 −

0.1760]. Moving along the −x1 direction corresponds to

approaching the base of the robot, i.e., a region where the

human should be able to safely interact with the manipulator.

The obtained stiffness and damping gains at these points are

shown in Fig. 7 for direction x2 (the results were equivalent

in all the remaining directions). We can observe a decrease

in both stiffness and damping as the distance to the training



Fig. 4: Estimated energy and consequent impedance gains during one reproduction of the collaborative transportation task, using the proposed approach.
Left: Energy, center: stiffness gains, right: damping gains. Each row corresponds to one position degree of freedom in task space.

data increases. Similar observations occur for movements of

the human hand along all directions of the operational space,

as one can verify in the accompanying video. These results

clearly suggest that our approach permits rendering the robot

compliant when the inputs to its desired actions differ from

those observed during demonstrations.

D. Comparison with GMM

The ability of the proposed approach to render the robot

compliant in the face of uncertainty is here tested against

the approach based on GMM introduced by Calinon et al.

[4]. In that framework, we have Qt = Σ
−1

t , where Σt is

a full covariance matrix, predicted by GMR. Moreover, the

penalty term on the control commands Rt is set to a constant

value. In order to model the collaborative transportation task

using GMM, further demonstrations are required and thus

we added 4 more to the dataset. We trained a model with

4 Gaussian components, chosen empirically, yielding the

representation of the robot end-effector position shown in

Fig. 6. The previously selected points p
1
,p

2
,p

3
were used

again to compute the impedance gains, in regions where

demonstrations are not present. Using this approach we

obtained the stiffness and damping gains shown in Fig. 7

(green columns). Once more, we here show the results only

for direction x2, but the same trends were present in all di-

rections. We observe that the estimated stiffness and damping

gains are consistently high, regardless of the distance to the

region where demonstrations were provided. This follows

from the fact that covariance matrices model variability and

correlation among state variables, unlike variance in GPR

predictions which, as we discussed in Section III, models

the uncertainty.

V. DISCUSSION AND FUTURE WORK

Despite that Section IV showed the merits of the proposed

approach in a realistic scenario, some points deserve a more

detailed discussion. Firstly, throughout the paper we have

referred to the distance to the demonstrations in a rather

qualitative sense. However, it should be noted that the notion

of distance can be regulated through the length scale of

the SE kernel l. Indeed, by increasing/decreasing l, one

Fig. 5: Effect of perturbations on the end-effector trajectory, measured by
position and velocity tracking errors. Shaded areas highlight the moments
when perturbations occur. Notice the different responses along each degree
of freedom, which follow from the learned impedance profiles.

Fig. 6: Five demonstrations of the collaborative transportation task, modeled
by a GMM with 4 states. The gray points correspond to the end-effector
position during the demonstrations while the green ellipses depict Gaussian
distributions, plotted to a width of two standard deviations.

can make the robot exhibit the default compliant behavior

further away/closer to the demonstrations. Note, however,

that setting this hyperparameter to a too small value, might

result in good tracking only when the input coincides exactly

with the demonstrations, which might be hard to achieve

in physical human-robot interaction scenarios since humans

may exhibit some degree of variation in their actions.

Secondly, our strategy for minimal intervention control

does not consider correlated movements between DoFs. It

is a well-known fact that Gaussian Processes – the backbone

of our framework – are homoscedastic, i.e. they do not

encode input-dependent covariance. Works such as [10], [17],

which propose formulations for regressing both uncertainty

and correlation, may provide the possibility to simultane-

ously consider both aspects into our approach, which can

potentially allow us to study the complementarity of the two



Fig. 7: Stiffness and damping gains along x2, estimated for three points
at increasing distances from the training data. The red columns show the
results using our approach while the green ones correspond to the GMM-
based approach from [4]. The decreasing trend using our approach is present
in all other directions, despite not being plotted here.

notions of minimal intervention control.

Thirdly, it is important to highlight another aspect where

the strategy presented in Section III-C intrinsically differs

from that exploited in [3], [4], [5], [6]. With our approach,

since impedance gains do not depend on the consistency in

demonstrations, it may occur that the robot is too compliant

in directions where the demonstrator intended it to exhibit

high stiffness by demonstrating small variability. Circum-

venting this problem can be easily handled by increasing the

parameter λE . However this comes at the cost of increasing

the gains of all degrees of freedom, which, depending on the

scenario, may pose stability problems. It should be noted

that similar cases can also occur in the aforementioned

techniques. Namely, one might inadvertently exhibit low

variability in degrees of freedom where, in practice, high

compliance may be desired.

Finally, it should also be noted that exploiting Gaussian

Processes does not constrain the experimenter to use one

single demonstration, as we did in Section IV. Providing

more demonstrations can improve the generalization capabil-

ities of the approach. However, since the computational cost

of GPR increases with the number of training datapoints,

one should be aware of the trade-off between the number of

demonstrations and the computational load.

In future work we plan to study formulations of the

problem in joint space, where energy is directly linked to

physical properties of the real system such as motor power

and link mass. Moreover, we understand there is potential of

application in the context of task-parameterized skill learning

[4], which may be exploited with the aim of increasing the

extrapolation capabilities of the proposed framework.

VI. CONCLUSIONS

In this paper we proposed an approach for learning vari-

able impedance gains from demonstrations while considering

the uncertainty of the actions predicted by the robot. This was

achieved through a combination of optimal control and Gaus-

sian Process Regression. In particular, we formulated the gain

estimation as a typical LQR problem, with parameterization

obtained from a Gaussian Process that serves as a prior on

demonstrations. The proposed framework was validated in a

human-robot collaborative transportation scenario, in which

we saw that the approach effectively rendered the robot

compliant when the human was outside the region where

demonstrations were provided. We also verified that the robot

was able to adapt its stiffness and damping gains when

the uncertainty was low, following a minimum intervention

strategy to control its trajectory by tracking the reference

state with higher gains along the most important directions

of the movement.
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