117 research outputs found

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Population Carrier Rates of Pathogenic ARSA Gene Mutations: Is Metachromatic Leukodystrophy Underdiagnosed?

    Get PDF
    BACKGROUND: Metachromatic leukodystrophy (MLD) is a severe neurometabolic disease caused mainly by deficiency of arylsulfatase A encoded by the ARSA gene. Based on epidemiological surveys the incidence of MLD per 100,000 live births varied from 0.6 to 2.5. Our purpose was to estimate the birth prevalence of MLD in Poland by determining population frequency of the common pathogenic ARSA gene mutations and to compare this estimate with epidemiological data. METHODOLOGY: We studied two independently ascertained cohorts from the Polish background population (N∼3000 each) and determined carrier rates of common ARSA gene mutations: c.459+1G>A, p.P426L, p.I179S (cohort 1) and c.459+1G>A, p.I179S (cohort 2). PRINCIPAL FINDINGS: Taking into account ARSA gene mutation distribution among 60 Polish patients, the expected MLD birth prevalence in the general population (assuming no selection against homozygous fetuses) was estimated as 4.0/100,000 and 4.1/100,000, respectively for the 1(st) and the 2(nd) cohort with a pooled estimate of 4.1/100,000 (CI: 1.8-9.4) which was higher than the estimate of 0.38 per 100,000 live births based on diagnosed cases. The p.I179S mutation was relatively more prevalent among controls than patients (OR = 3.6, P = 0.0082, for a comparison of p.I179S frequency relative to c.459+1G>A between controls vs. patients). CONCLUSIONS/SIGNIFICANCE: The observed discrepancy between the measured incidence of metachromatic leukodystrophy and the predicted carriage rates suggests that MLD is substantially underdiagnosed in the Polish population. The underdiagnosis rate may be particularly high among patients with p.I179S mutation whose disease is characterized mainly by psychotic symptoms

    Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota

    Get PDF
    The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequencies > 20 kHz), and electrophysiological experiments have demonstrated that neurons in the frog’s midbrain (torus semicircularis) respond to frequencies up to 34 kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species

    Prostate cancer and body size at different ages: an Italian multicentre case–control study

    Get PDF
    We investigated the influence of anthropometric measures at diagnosis and at different ages on prostate cancer risk using an Italian multicentre case-control study conducted between 1991 and 2002 of 1294 histologically confirmed cases and 1451 controls admitted to the same network of hospitals for acute non-neoplastic conditions. Height, weight, body mass index (BMI), waist-to-hip ratio, lean body mass 1 year before diagnosis/interview were not significantly associated with risk. However, a positive association with high BMI at age 30 years was found (odds ratio=1.2 for BMI> or =24.7 vs <22.7) and: for less differentiated prostate cancer, with BMI 1 year before diagnosis/interview. This study supports possible relationships between high body mass in young adulthood, and a tendency to high weight throughout adult life, and the risk of prostate cancer

    A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush <it>Lindera obtusiloba </it>(<it>L.obtusiloba</it>) is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of <it>L.obtusiloba </it>extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of <it>L.obtusiloba </it>extract on human hepatocellular carcinoma (HCC) cell lines and the signaling pathways involved.</p> <p>Methods</p> <p>Four human HCC cell lines representing diverse stages of differentiation were treated with <it>L.obtusiloba </it>extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined.</p> <p>Results</p> <p><it>L.obtusiloba </it>extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, <it>L.obtusiloba </it>extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase.</p> <p>Conclusions</p> <p>The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized <it>L.obtusiloba </it>extract should be further analysed for its active compounds and explored as (complementary) treatment option for HCC.</p

    Genetic variation in insulin-like growth factor signaling genes and breast cancer risk among BRCA1 and BRCA2 carriers

    Get PDF
    Abstract Introduction Women who carry mutations in BRCA1 and BRCA2 have a substantially increased risk of developing breast cancer as compared with the general population. However, risk estimates range from 20 to 80%, suggesting the presence of genetic and/or environmental risk modifiers. Based on extensive in vivo and in vitro studies, one important pathway for breast cancer pathogenesis may be the insulin-like growth factor (IGF) signaling pathway, which regulates both cellular proliferation and apoptosis. BRCA1 has been shown to directly interact with IGF signaling such that variants in this pathway may modify risk of cancer in women carrying BRCA mutations. In this study, we investigate the association of variants in genes involved in IGF signaling and risk of breast cancer in women who carry deleterious BRCA1 and BRCA2 mutations. Methods A cohort of 1,665 adult, female mutation carriers, including 1,122 BRCA1 carriers (433 cases) and 543 BRCA2 carriers (238 cases) were genotyped for SNPs in IGF1, IGF1 receptor (IGF1R), IGF1 binding protein (IGFBP1, IGFBP2, IGFBP5), and IGF receptor substrate 1 (IRS1). Cox proportional hazards regression was used to model time from birth to diagnosis of breast cancer for BRCA1 and BRCA2 carriers separately. For linkage disequilibrium (LD) blocks with multiple SNPs, an additive genetic model was assumed; and for single SNP analyses, no additivity assumptions were made. Results Among BRCA1 carriers, significant associations were found between risk of breast cancer and LD blocks in IGF1R (global P = 0.011 for LD block 2 and global P = 0.012 for LD block 11). Among BRCA2 carriers, an LD block in IGFBP2 (global P = 0.0145) was found to be associated with the time to breast cancer diagnosis. No significant LD block associations were found for the other investigated genes among BRCA1 and BRCA2 carriers. Conclusions This is the first study to investigate the role of genetic variation in IGF signaling and breast cancer risk in women carrying deleterious mutations in BRCA1 and BRCA2. We identified significant associations in variants in IGF1R and IRS1 in BRCA1 carriers and in IGFBP2 in BRCA2 carriers. Although there is known to be interaction of BRCA1 and IGF signaling, further replication and identification of causal mechanisms are needed to better understand these associations

    Serotonergic Contribution to Boys' Behavioral Regulation

    Get PDF
    Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors

    Mouse models of breast cancer metastasis

    Get PDF
    Metastatic spread of cancer cells is the main cause of death of breast cancer patients, and elucidation of the molecular mechanisms underlying this process is a major focus in cancer research. The identification of appropriate therapeutic targets and proof-of-concept experimentation involves an increasing number of experimental mouse models, including spontaneous and chemically induced carcinogenesis, tumor transplantation, and transgenic and/or knockout mice. Here we give a progress report on how mouse models have contributed to our understanding of the molecular processes underlying breast cancer metastasis and on how such experimentation can open new avenues to the development of innovative cancer therapy
    corecore